Skip to main content
Log in

Rockfall trajectory modeling combined with heuristic analysis for assessing the rockfall hazard along the Maratea SS18 coastal road (Basilicata, Southern Italy)

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

In this paper, a study aimed to assess the rockfall hazard along a portion of the SS18 coastal road, located in the coastal area of Maratea (Basilicata Region, Southern Italy), is presented. The relevance of this study derives from the location of the study area, because the SS18 is a strategic roads in a touristic area, and, since the hazard assessment was performed in 2004 within a project financed by the Viability Regional Department of Autonomous National Company of Roads (ANAS), from the possibility to validate the results by using real rockfall events occurred after 2004. The procedure for assessing the rockfall hazard was composed of four sequential analyses: (i) geomechanical and kinematic characterization of rock mass, (ii) implementation of Romana’s (1985) Slope Mass Rating (SMR) method for identifying the potential boulder release areas (rockfall initiation areas), (iii) determination of rockfall trajectories by using a 3D numerical model (ROTOMAP), (iv) calculation and mapping of the hazard index by combining three factors, i.e., (a) lithological features of outcropping materials on rock faces, (b) kinematic compatibility defined by simulating the rockfall trajectories, and (c) spatial distribution of occurred rockfall events. Finally, the proposed methodology was validated by combining the distribution of the hazard levels along the road with the location on the SS18 of the rockfall events occurred from 2004 to 2014.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agliardi F, Crosta G (2003) High resolution three-dimensional numerical modelling of rockfalls. Int J Rock Mech Min Sci 40:455–471

    Article  Google Scholar 

  • Agliardi F, Crosta GB, Frattini P (2009) Integrating rockfall risk assessment and countermeasure design by 3D modeling techniques. Nat Hazards Earth Syst Sci 9(4):1059–1073

    Article  Google Scholar 

  • Anbalagan R (1992) Landslide hazard evaluation and zonation mapping in mountainous terrain. Eng Geol 32:269–277

    Article  Google Scholar 

  • Baillifard F, Jaboyedoff M, Sartori M (2003) Rockfall hazard mapping along a mountainous road in CH using a GIS-based parameter rating approach. Nat Hazards Earth Syst Sci 3:431–438

    Article  Google Scholar 

  • Barret RK, Pfeiffer T (1989) Rockfall modeling and attenuator testing. US Department of Transportation, Federal Highway Administration, Final Report, 107 pp

  • Bieniawski ZT (1979) The geomechanics classification in rock engineering applications. In: Proc. of the 4th ISRM Cong., Montreux, Suisse. Balkema, Rotterdam, pp 51–58

  • Bieniawski ZT (1989) Engineering rock mass classifications. Wiley, New York, p 251

    Google Scholar 

  • Budetta P (2004) Assessment of rockfall risk along roads. Nat Hazards Earth Syst Sci 4:71–81

    Article  Google Scholar 

  • Budetta P, Panico M (2002) Il metodo “Rockfall Hazard Rating System” modificato per la valutazione del rischio da caduta massi sulle vie di comunicazione. G Geol Tecnica Ambient 4:3–13

    Google Scholar 

  • Calcaterra D, De Luca Tupputi Schinosa F, Fenelli GB (2004) Rockfall hazard assessment at Mt. San Costanzo (Sorrento Peninsula, Italy). Landslides: evaluation and stabilization. Lacerda, Ehrlich, Fontoura & Sayo (eds) pp 265–271

  • Cancelli A, Crosta G (1993) Hazard and risk assessment in rockfall prone areas. In: Skipp BO (ed) Risk reliability in ground engineering, Thomas Telford, pp 177–190

  • Colangelo G, Guariglia A (2011) A combined methodology for landslide risk mitigation in Basilicata Region by using LIDAR technique and rockfall simulation. Int J Geophys 2011, 392676, 5 pp. doi:10.1155/2011/392676

  • Corominas J, Copons R, Moya J, Vilaplana JM, Altimir J, Amigò J (2005) Quantitative assessment of the residual risk in a rockfall protected area. Landslides 2:343–357

    Article  Google Scholar 

  • Cotecchia V, D’Ecclesiis G, Polemio M (1990) Studio geologico e idrogeologico dei monti di Maratea. Geologia Applicata e Idrogeologia, Vol. XXV, Bari

  • D’Argenio B, Pescatore TS, Scandone P (1973) Schema geologico dell’Appennino meridionale (Campania e Lucania). Atti Accad Naz Lincei Quad 183:49–72

    Google Scholar 

  • De Almeida JA, Kullberg JC (2011) Rockfall hazard and risk analysis for Monte da Lua, Sintra, Portugal. Nat Hazards 58:289–310

    Article  Google Scholar 

  • Dorren LKA, Seijmonsbergen AC (2003) Comparison of three GIS-based models for predicting rockfall runout zones at a regional scale. Geomorphology 56:49–64

    Article  Google Scholar 

  • Ferlisi S, Cascini L, Corominas J, Matano F (2012) Rockfall risk assessment to persons travelling in vehicles along a road: the case study of the Amalfi coastal road (southern Italy). Nat Hazard 62:691–721

    Article  Google Scholar 

  • Franklin JA, Senior SA (1997) The Ontario rockfall hazard rating system. In: Proceedings of international conference on engineering geologu and environment, vol. 1, pp 647–656

  • Frattini P, Crosta G, Carrara A, Agliardi F (2008) Assessment of rockfall susceptibility by integrating statistical and physically-based approaches. Geomorphology 94:419–437

    Article  Google Scholar 

  • Geo&Soft (2004) Rotomap - Manualed’uso. http://www.geoandsoft.it

  • Ghosh S, Gunther A, Carranza EJM, Van Westen CJ, Jetten VG (2010) Rock slope instability assessment using spatially distributed structural orientation data in Darjeeling Himalaya (India). Earth Surface Processes and Landforms 35(15):1773–1792

    Article  Google Scholar 

  • Glade T, Anderson M, Crozier MJ (2005) Landslide hazard and risk. Wiley, New York, p 802

    Book  Google Scholar 

  • Gupta V, Tandon RS (2014) Kinematic rockfall hazard assessment along a transportation corridor in the Upper Alaknanda valley, Garhwal Himalaya. India Bull Eng Geol Environ. doi:10.1007/s10064-014-0623-7

    Google Scholar 

  • Guzzetti F, Crosta G, Detti R, Agliardi F (2002) STONE: a computer program for the three dimensional simulation of rock-falls. Comput Geosci 28(9):1079–1093

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Ghigi S (2004) Rockfall hazard and risk assessment along a transportation corridor in the Nera Valley, Central Italy. Environ Manag 34(2):191–208

    Article  Google Scholar 

  • INGV (2010) ISIDe- Italian Seismological Instrumental and parametric database. http://iside.rm.ingv.it

  • ISRM (1981) Suggested method for the quantitative description of discontinuities in rock masses. In: Brown ET (ed) Rock characterization testing and monitoring. Pergamon, Oxford, pp 3–52

    Google Scholar 

  • Maeez NH, Youssef A (2004) Development of a highway rock cut rating system for Missouri highways. Development and technology.Missouri Department of Transportation, Jefferson

    Google Scholar 

  • Markland JT (1972) A useful technique for estimating the stability of rock slopes when the rigid wedge sliding type of failure is expected. Imperial College Rock Mechanics Research Report No. 19, pp 10

  • Mauldon M, Drumm EC, Dunne WM, Bateman V, Rose B, Kim M (2007) Rockfall management system for Tenesse. Division of Materials and Tests, Tennessee Department of Transportation, Nashville

    Google Scholar 

  • Mavrouli O, Corominas J (2010) Vulnerability of simple reinforced concrete buildings to damage by rockfalls. Landslides 7:169–180

    Article  Google Scholar 

  • Mignelli C, Lo Russo S, Peila D (2012) ROckfall risk Management assessment: the RO.MA. Nat Hazards 62:1109–1123

    Article  Google Scholar 

  • Pack R, Boie K, Mather S, Farrell J (2006) UDOT rockfall hazard rating system: final report and user’s manual (Report UT-06.07). Utah State University, Logan

    Google Scholar 

  • Pantelidis L (2011) A critical review of highway slope instability risk assessment systems. Bull Eng Geol Environ 70:395–400

    Article  Google Scholar 

  • Pellicani R, Van Westen CJ, Spilotro G (2014a) Assessing landslide exposure in areas with limited landslide information. Landslides 11(3):463–480. doi:10.1007/s10346-013-0386-4

    Article  Google Scholar 

  • Pellicani R, Frattini P, Spilotro G (2014b) Landslide susceptibility assessment in Apulian Southern Apennine: heuristic vs. statistical methods. Environ Earth Sci 72(4):1097–1108. doi:10.1007/s12665-013-3026-3

    Article  Google Scholar 

  • Pfeiffer T, Bowen T (1989) Computer simulation of rock falls. Bull Assoc Eng Geol 26(1):135–146

    Google Scholar 

  • Pierson LA, Van Vickle R (1993) Rockfall hazard rating system—participant’s manual. SNI International Resources Inc., Phoenix

    Google Scholar 

  • Pierson LA, Davis SA, Van Vickle R (1990) Rockfall hazard rating system implementation manual. Report FHWA-OR-EG-90-01, Federal Highway Administration (FHWA), U.S. Department of Transportation, Washington

  • Piteau DR, Clayton R (1978) Computer rockfall model. Proceedings meeting on rockfall dynamics and protective works effectiveness, Bergamo, Italy, ISMES, 90: 123–125

  • Rizzo V, Leggeri M (2004) Slope instability and sagging reactivation at Maratea (Potenza, Basilicata, Italy). Eng Geol 71:181–198

    Article  Google Scholar 

  • Romana M (1985) New adjustment rating for application of Bieniawski classification to slopes. Int. Symp. Role of Rock Mechanics. Zacatecas. pp 49–53

  • Russel CP, Santi P, Humphrey JD (2008) Modification and statistical analysis of the Colorado rockfall hazard rating system. Colorado School of Mines, Golden

    Google Scholar 

  • Scioldo G (2006) User guide ISOMAP & ROTOMAP—3D surface modelling and rockfall analysis. Geo&Soft International, Torino

    Google Scholar 

  • Spilotro G, Petraglia A, Pizzo V (2004) Strada Statale n.18 “Tirrena Inferiore”. Assistenza tecnica per l’acquisizione ed il trattamento dei dati necessari alla zonazione della pericolosità e del rischio di caduta massi lungo il tratto di strada compreso tra i km 220 + 600 e 243 + 670. Relazione generale. ANAS – Ente Nazionale per le strade- Compartimento Regionale della Viabilità - Potenza

  • Stock GM, Luco N, Collins BD, Harp EL, Reichenbach P, Frankel KL (2012) Quantitative rock-fall hazard and risk assessment for Yosemite Valley, Yosemite National Park, California. USGS Scientific Investigations Report 2014–5129. http://pubs.usgs.gov/sir/2014/5129/

  • Stoffel M, Wehrli A, Kuhne R, Dorren LKA, Perret S, Kienholz H (2006) Assessing the protective effect of mountain forests against rockfall using a 3D simulation model. For Ecol Manag 225:113–122

    Article  Google Scholar 

  • Topal T, Akin MK, Akin M (2012) Rockfall hazard analysis for an historical Castle in Kastamonu (Turkey). Nat Hazards 63(3):255–274

    Article  Google Scholar 

  • Turner AK, Schuster RL (2013) Rockfall: characterization and control. Transportation Research Board, Washington, 658p

    Google Scholar 

  • Varnes DJ (1984) Landslide hazard zonation: a review of principles and practice. United Nations International, Paris

    Google Scholar 

  • Volkwein A, Schellenberg K, Labiouse V, Agliardi F, Berger F, Bourrier F, Dorren LKA, Gerber W, Jaboyedoff M (2011) Rockfall characterization and structural protection—a review. Nat Hazards Earth Syst Sci 11:2617–2651

    Article  Google Scholar 

  • Wang X, Frattini P, Crosta GB, Zhang L, Agliardi F, Lari S, Yang Z (2013) Uncertainty assessment in quantitative rockfall risk assessment. Landslides. doi:10.1007/s10346-013-0447-8

    Google Scholar 

  • Yilmaz I, Yildirim M, Keskin I (2008) A method for mapping the spatial distribution of RockFall computer program analyses results using ArcGIS software. Bull Eng Geol Environ 67:547–554

    Article  Google Scholar 

  • Youssef AM, Maerz NH (2012) Development, justification, and verification of a rock fall hazard rating system. Bull Eng Geol Environ 71:171–186

    Article  Google Scholar 

Download references

Acknowledgments

The Authors are grateful to Antonio Petraglia (consultant geologist) for his assistance in carrying out the geomechanical surveys and Gerardo Colangelo (Civil Protection of Basilicata) for providing data on recent rockfall events.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta Pellicani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pellicani, R., Spilotro, G. & Van Westen, C.J. Rockfall trajectory modeling combined with heuristic analysis for assessing the rockfall hazard along the Maratea SS18 coastal road (Basilicata, Southern Italy). Landslides 13, 985–1003 (2016). https://doi.org/10.1007/s10346-015-0665-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-015-0665-3

Keywords

Navigation