Skip to main content

Advertisement

Log in

Quantitative assessment of the residual risk in a rockfall protected area

  • Original Article
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Quantitative Risk Assessment (QRA) has become an indispensable tool for the management of landslide hazard and for planning risk mitigation measures. In this paper we present the evaluation of the rockfall risk at the Solà d’Andorra slope (Andorra Principality) before and after the implementation of risk mitigation works, in particular, the construction of protective fences. To calculate the risk level we have (i) identified the potential rockfall release areas, (ii) obtained the volume distribution of the falling rocks, (iii) determined the frequency of the rockfall events, and (iv) performed trajectographic analysis with a 3D numerical model (Eurobloc) that has provided both the expected travel distances and the kinetic energy of the blocks. The risk level at the developed area located at the foot of the rock cliff has been calculated taking into account the nature of the exposed elements and their vulnerability. In the Forat Negre basin, the most dangerous basin of the Solà d’Andorra, the construction of two lines of rockfall protection fences has reduced the annual probability of loss of life for the most exposed person inside the buildings, from 3.8×10−4 to 9.1×10−7 and the societal risk from 1.5×10−2 of annual probability of loss of life to 1.2×10−5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alestalo J (1971) Dendrochronological interpretation of geomorphic processes. Fennia 105:1–140

    Google Scholar 

  • Bordonau J (1992) Els complexos glaciolacustres relacionats amb el darrer cicle glacial als Pirineus, Geoforma Ediciones, Logroño, 251 pp

    Google Scholar 

  • Braam RR, Weiss EEJ, Burrough PA (1987) Spatial and temporal analysis of mass movement using dendrochronology. Catena 14:573–584

    Article  Google Scholar 

  • Bunce CM, Cruden DM, Morgenstern RM (1997) Assessment of the hazard from rock fall on a highway. Can Geotech J 34:344–356

    Article  Google Scholar 

  • Caine N (1980) The rainfall intensity-duration control of shallow landslides and debris-flows. Geografiska Annaler 62A:23–27

    Article  Google Scholar 

  • Cannon SH (1988) Regional rainfall-threshold conditions for abundant debris-flow activity. In: Ellen SD, Wieczorek GF (eds) Landslides, floods and marine effects of the storm of January 3–5, 1982, in the San Francisco Bay region, California. U.S. Geological Survey Professional Paper, 1434, pp 35–42

  • Chau KT, Wong RHC, Liu J, Lee CF (2003) Rockfall hazard analysis for Hong Kong based on rockfall inventory. Rock Mech Rock Eng 36(5):383–408

    Article  Google Scholar 

  • Copons R, Vilaplana JM, Altimir J, Amigó J (2000) Estimación de la eficacia de las protecciones contra la caída de bloques. Revista de Obras Públicas 3394:37–48

    Google Scholar 

  • Copons R, Altimir J, Amigó J, Vilaplana JM (2001) Medotología Eurobloc para el estudio y protección de cáidas de bloques rocosos. Principado de Andorra. V Simposio Nacional sobre Taludes y Laderas Inestables. Madrid 2:665–676

    Google Scholar 

  • Copons R (2005) Avaluació de la perillositat de caiguda de blocs a Andorra la Vella (Principat d’Andorra). Monografia del CRECIT. Ed. Centre de Recerca en Ciències de la Terra (CRECIT). Sant Julià

  • Copons R, Vilaplana JM, Corominas J, Altimir J, Amigó J (2005) Rockfall risk management in high-density urban areas. The Andorran experience. In: Glade T, Anderson M, Crozier MJ (eds) Landslide hazard and risk. Wiley, New York, pp 675–698

  • Corominas J (1996) The angle of reach as a mobility index for small and large landslides. Can Geotech J 33:260–271

    Google Scholar 

  • Corominas J (2000) Landslides and climate. 8th International Symposium on Landslides. Cardiff, Keynote lectures [CD-Rom]

  • Corominas J, Moya J (1999) Reconstructing recent landslide activity in relation to rainfall in the Llobregat river basin, Eastern Pyrenees, Spain. Geomorphology 30:79–93

    Article  Google Scholar 

  • Dorren LKA, Maier B, Putters US, Seijmonsbergen AC (2004) Combining field and modelling techniques to assess rockfall dynamics on a protection forest hisllslope in the European Alps. Geomorphology 57:151–167

    Article  Google Scholar 

  • Dussauge C, Helmstetter A, Grasso JR, Hantz D, Desvarreux P, Jeannin M, Giraud A (2002) Probabilistic approach to rockfall hazard assessment: potential of historical data analysis. Nat Hazards Earth Syst Sci 2:15–26

    Article  Google Scholar 

  • Fell R (1994) Landslide risk assessment and acceptable risk. Can Geotech J 31:261–272

    Article  Google Scholar 

  • Fell R, Hartford D (1997) Landslide risk management. In: Cruden D, Fell R (eds) Landslide risk assessment. Balkema, Rotterdam, pp 51–109

    Google Scholar 

  • Fell R, Ho KKS, Lacasse S, Leroi E (2005) A framework for landslide risk assessment and management. International Conference on Landslide Risk Assessment and Management. Vancouver, BC, Canada

  • Geotechnical Engineering Office (1998). Landslides and Boulder Falls from Natural Terrain: Interim Risk Guidelines. GEO Report No.75, Geotechnical Engineering Office, The Government of the Hong Kong Special Administrative Region

  • Hungr O (1997) Some methods of landslide hazard intensity mapping. In: Cruden D, Fell R (eds) Landslide risk assessment. Balkema, Rotterdam, pp 215–226

    Google Scholar 

  • Hungr O, Evans SG (1988) Engineering evaluation of fragmental rockfall hazard. In: Bonnard C (ed) 5th International symposium on landslides, Vol 1. Lausanne, pp 685–690

  • Hungr O, Evans SG, Hazzard J (1999) Magnitude and frequency of rock falls and rock slides along the main transportation corridors of southwestern British Columbia. Can Geotech J 36:224–238

    Article  Google Scholar 

  • Hupp CR, Osterkamp WR, Thornton JL (1987) Debris-flow activity and associated hazards on Mount Shasta, northern California. United States Government Printing Office, paper 1396-B, B1–B39

  • Leone F, Asté JP, Leroi E (1996) Vulnerability assessment of elements exposed to mass moving: working towards a better risk perception. In: Senneset K (ed) Landslides. Balkema, Rotterdam, pp. 263–269

  • Lopez C, Ruíz J, Amigó J, Altimir J (1997) Aspectos metodológicos del diseño de sistemas de protección frente a las caídas de bloques mediante modelos de simulación cinemáticos. IV Simposio nacional sobre taludes y laderas inestables, Vol. 2. Granada, pp. 811–823

  • Miller I, Miller M, (1998) John E. Freund's mathematical statistics with applications, 6th edn. Prentice Hall, Upper Saddle, NJ, 624 pp

  • Moya J (2002) Determinación de la edad y de la periodicidad de los deslizamientos en el Prepirineo oriental Ph. D. Thesis, Unpublished, Universidad Politécnica de Catalunya. 260 p

  • Noverraz F, Bonnard C (1991) L’écroulement rocheux de Randa, près de Zermatt. In Bell (ed) Proceedings 6th International Symposium on Landslides, Vol 1. Christchurch. A.A. Balkema, pp. 165—170

  • Perret S, Dolf F, Kienholz H (2004) Rockfalls into forest: analysis and simulation of rockfall trajectories—considerations with respect to mountainous forests in Switzerland. Landslides 1:123–130

    Article  Google Scholar 

  • Rouiller JD, Marro C (1997) Application de la métodologie MATTEROCK à l’évaluation du danger lié aux falaises. Eclogae Geol Helvetiae 90:393–399

    Google Scholar 

  • Shroder JF (1978) Dendrogeomorphological analysis of mass movement of Table Cliffs Plateau, Utah. Quatern Res 9:168–185

    Article  Google Scholar 

  • Teixidó T, Palomares I, Valls P, Martinez P (2003) Prospecció sísmica a la cubeta d’Andorra la Vella-Escaldes-Engordany. Horitzó, Crecit-IEA 4:3–25. (http://www.iea.ad/crecit/imatges/ H4prospecciosismica.pdf)

  • Wieczorek GF (1987) Effect of rainfall intensity and duration on debris flows in central Santa Cruz Mountains, California. Geological Society of America. Rev Eng Geol 7:93–104

    Google Scholar 

  • Wyllie DC, Norrish NI (1996) Stabilisation of rock sloes. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation. Special Report 247. Transportation Research Board, National Research Council, Washington, DC, pp 474–504

Download references

Acknowledgements

The authors gratefully acknowledge the assistance of Antoni Díaz from Eurogeotecnica in the trajectographic analysis carried out. This work has received financial support from the Rockfor project (Contract QLK5-CT-2000-01302) funded by the European Commission from the project SGR2001-00081 funded by the DURSI. The authors are indebted to Professors Robin Fell and Christophe Bonnard who have reviewed and made several valuable suggestions to a first draft of the paper

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordi Corominas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corominas, J., Copons, R., Moya, J. et al. Quantitative assessment of the residual risk in a rockfall protected area. Landslides 2, 343–357 (2005). https://doi.org/10.1007/s10346-005-0022-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-005-0022-z

Key words

Navigation