Skip to main content
Log in

Optimization of Salicylic Acid Dose to Improve Lettuce Growth, Physiology and Yield Under Salt Stress Conditions

  • Original Article / Originalbeitrag
  • Published:
Journal of Crop Health Aims and scope Submit manuscript

An Erratum to this article was published on 03 November 2023

This article has been updated

Abstract

In irrigated agriculture, soil salinity threatens the sustainability of crop productivity and global food security by reducing water quantity and quality. Therefore, foliar spraying with protectants has proven to be an efficient method for diminishing the effects of salt stress and boosting crop growth performance. The present study was conducted to explore the effects of different doses of salicylic acid (SA) on evapotranspiration (ET), yield, growth, and physiology of lettuce (Lactuca sativa L.) under saline irrigation conditions. Additionally, response surface methodology was employed to identify the most effective dose of SA for lettuce plants under saline irrigation conditions. At the lowest salinity (0.30 dS m−1), 1.0 mM and 2.0 mM SA foliar applications increased yield by 29.7% and 6.8%, respectively, compared with 0 mM SA. At the same salinity, chlorophyll content and stomata increased by 35.6% and 22.6%, respectively, at 1.0 mM SA and 10.4% and 8.2%, respectively, at 2.0 mM SA compared to the 0 mM SA dose condition. Moreover, ET was reduced by 56.4%, 50.1%, and 55.5% at 0, 1, and 2 mM SA doses, respectively, when water salinity increased from 0.30 to 8.0 dS m−1. The optimal SA dose and irrigation water salinity were identified as 0.88 mM and 0.32 dS m−1, respectively. In conclusion, this study provides important guidelines for the effective use of SA in lettuce production under salt-stress conditions, with implications for improving the quantitative and qualitative traits of lettuce irrigated with saline water in regions of freshwater scarcity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Sait Kiremit.

Ethics declarations

Conflict of interest

M.S. Kiremit declares that he has no competing interests.

Additional information

The original online version of this article was revised: The table header of Table 3 was incomplete.

The table should have appeared as shown below.

Rights and permissions

Springer Nature oder sein Lizenzgeber (z.B. eine Gesellschaft oder ein*e andere*r Vertragspartner*in) hält die ausschließlichen Nutzungsrechte an diesem Artikel kraft eines Verlagsvertrags mit dem/den Autor*in(nen) oder anderen Rechteinhaber*in(nen); die Selbstarchivierung der akzeptierten Manuskriptversion dieses Artikels durch Autor*in(nen) unterliegt ausschließlich den Bedingungen dieses Verlagsvertrags und dem geltenden Recht.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiremit, M.S. Optimization of Salicylic Acid Dose to Improve Lettuce Growth, Physiology and Yield Under Salt Stress Conditions. Journal of Crop Health 76, 269–283 (2024). https://doi.org/10.1007/s10343-023-00930-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-023-00930-4

Keywords

Navigation