Skip to main content

Advertisement

Log in

Soil Application of Potassium Maintains Growth, Water Relations, Yield and Seed Quality of Quinoa in Salt Affected Soils

  • Original Article / Originalbeitrag
  • Published:
Journal of Crop Health Aims and scope Submit manuscript

Abstract

Quinoa is a super food, climate resilient crop which can be grown on salt affected soils, but the seed produced in sat affected soil show poor germination and vigour. A study comprising of pot and field experiment with two salinity levels, normal (less than 4 dS m−1), saline (15 dS m−1) and four potassium doses 50, 75, 100, 125 kg ha−1 was conducted to evaluate the effect of potassium application on plant growth, physiology, water relations and seed quality of quinoa CV. (UAF-Q7). Soil application of potassium @125 kg ha−1 increased plant height and panicle length in both experiments. Transpiration rate, water use efficiency, chlorophyll content index and photosynthetic rate also improved in normal and saline soil. Similarly, plant water relations including osmotic potential, water potential, relative water contents, seed yield and seed germination (82%) also improved by application of application of potassium @125 kg ha−1. Sodium ion concentration in quinoa seed decreased (21.66 ppm) and potassium concentration increased (43.95 ppm) while no significant change in calcium was observed by the application of potassium. In conclusion, soil application of potassium @125 kg ha−1 not only improves growth, physiology, and yield attributes but also seed quality of quinoa in both normal and salt affected soil. Recommendations of this study will be helpful to improve the quality of quinoa seed produced on salt affected soils and future food security.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adolf VI, Jacobsen S‑E, Shabala S (2013) Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.). Environ Exp Bot 92:43–54

    Article  CAS  Google Scholar 

  • Akram MZ, Basra SMA, Hafeez MB, Khan S, Nazeer S, Iqbal S, Saddiq MS, Zahra N (2021) Adaptability and yield potential of new quinoa lines under agro-ecological conditions of Faisalabad-Pakistan. Asian J Agric Biol 2:202005301

    Google Scholar 

  • Almeida DM, Oliveira MM, Saibo NJ (2017) Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genet Mol Biol 40:326–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benaffari W, Meddich A (2023) Inoculation of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria mediated water stress tolerance in Quinoa seeds by modulating the phenolics compounds, stress markers, Osmolytes accumulation and antioxidant defense. Gesunde Pflanz. https://doi.org/10.1007/s10343-023-00849-w

    Article  Google Scholar 

  • Cocozza C, Pulvento C, Lavini A, Riccardi M, d’Andria R, Tognetti R (2013) Effects of increasing salinity stress and decreasing water availability on ecophysiological traits of Quinoa (C henopodium quinoa W illd.) grown in a M editerranean-type Agroecosystem. J Agro Crop Sci 199:229–240

    Article  Google Scholar 

  • Cuin TA, Miller AJ, Laurie SA, Leigh RA (2003) Potassium activities in cell compartments of salt-grown barley leaves. J Exp Bot 54:657–661

    Article  CAS  PubMed  Google Scholar 

  • Granaz Shaukat K, Baksh G, Zahra N, Hafeez MB, Raza A, Samad A, Nizar M, Wahid A (2022) Foliar application of thiourea, salicylic acid, and kinetin alleviate salinity stress in maize grown under etiolated and de-etiolated conditions. Discov Food 2:27

    Article  Google Scholar 

  • Hafeez MB, Raza A, Zahra N, Shaukat K, Akram MZ, Iqbal S, Basra SMA (2021) Gene regulation in halophytes in conferring salt tolerance. In: Handbook of bioremediation. Elsevier, pp 341–370

    Chapter  Google Scholar 

  • Hafeez MB, Iqbal S, Li Y, Saddiq MS, Basra SM, Zhang H, Zahra N, Akram MZ, Bertero D, Curti RN (2022) Assessment of phenotypic diversity in the USDA collection of quinoa links genotypic adaptation to germplasm origin. Plants 11:738

    Article  PubMed  PubMed Central  Google Scholar 

  • Hariadi Y, Marandon K, Tian Y, Jacobsen S‑E, Shabala S (2011) Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. J Exp Bot 62:185–193

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Bhuyan MB, Nahar K, Hossain MS, Mahmud JA, Hossen MS, Masud AAC, Fujita M (2018) Potassium: a vital regulator of plant responses and tolerance to abiotic stresses. Agronomy 8(3):31

    Article  Google Scholar 

  • Horwitz W, Latimer G Jr (2006) Official methods of analysis of AOAC International, 18th edn. AOAC International, Gaithersburg

    Google Scholar 

  • Huang P, He L, Abbas A, Hussain S, Hussain S, Du D, Hafeez MB, Balooch S, Zahra N, Ren X (2021) Seed priming with sorghum water extract improves the performance of camelina (Camelina sativa (L.) crantz.) under salt stress. Plants 10:749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iqbal A, Hidayat Z (2016) Potassium management for improving growth and grain yield of maize (Zea mays L.) under moisture stress condition. Sci Rep 6:34627

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Iqbal S, Basra SM, Afzal I, Wahid A, Saddiq MS, Hafeez MB, Jacobsen SE (2019) Yield potential and salt tolerance of quinoa on salt-degraded soils of Pakistan. J Agro Crop Sci 205:13–21

    Article  CAS  Google Scholar 

  • Johnson R, Vishwakarma K, Hossen MS, Kumar V, Shackira A, Puthur JT, Abdi G, Sarraf M, Hasanuzzaman M (2022) Potassium in plants: growth regulation, signaling, and environmental stress tolerance. Plant Physiol Biochem 172:56–69

    Article  CAS  PubMed  Google Scholar 

  • Kutlu I, Gulmezoglu N (2023) Suitable humic acid application methods to maintain physiological and enzymatic properties of bean plants under salt stress. Gesunde Pflanz 75:1075–1086

    Article  CAS  Google Scholar 

  • Lalarukh I, Zahra N, Shahzadi A, Hafeez MB, Shaheen S, Kausar A, Raza A (2023) Role of aminolevulinic acid in mediating salinity stress tolerance in sunflower (Helianthus annuus L.). J Soil Sci Plant Nutr. https://doi.org/10.1007/s42729-023-01406-0

    Article  Google Scholar 

  • Ma C, Cui H, Ren C, Yang J, Liu Z, Tang T, Ji C, Zhang C, Xue J, Li R (2022) The seed primer and biofertilizer performances of living Chlorella pyrenoidosa on Chenopodium quinoa under saline-alkali condition. J Appl Phycol 34:1621–1634

    Article  CAS  Google Scholar 

  • Marschner P (2012) Marschner, s mineral nutrition of higher plants, 3rd edn. Academic Press, New York

    Google Scholar 

  • Menezes RV, Azevedo Neto A, de Oliveira Ribeiro M, Cova AMW (2017) Growth and contents of organic and inorganic solutes in amaranth under salt stress. Pesq Agropec Trop 47:22–30

    Article  Google Scholar 

  • Pakar N, Pirasteh-Anosheh H, Emam Y, Pessarakli M (2016) Barley growth, yield, antioxidant enzymes, and ion accumulation affected by PGRs under salinity stress conditions. J of Plant Nutrition 39:1372–1379

    Article  CAS  Google Scholar 

  • Pitman MG, Läuchli A (2002) Global impact of salinity and agricultural ecosystems. In: Salinity: environment-plants-molecules, pp 3–20

    Google Scholar 

  • Poury N, Seifi E, Alizadeh M (2022) Effects of salinity and proline on growth and physiological characteristics of three olive cultivars. Gesunde Pflanz 75:1169–1180

    Article  Google Scholar 

  • Qi D, Zhao X, Le X, Jiang C, Wang X, Yi H, Jing W, H‑q Y (2019) Effects of potassium deficiency on photosynthesis, chloroplast ultrastructure, ROS, and antioxidant activities in maize (Zea mays L.). J Integr Agric 18:395–406

    Article  Google Scholar 

  • Raza A, Tabassum J, Fakhar AZ, Sharif R, Chen H, Zhang C, Ju L, Fotopoulos V, Siddique KH, Singh RK, Zhuang W, Varshney RK (2022) Smart reprograming of plants against salinity stress using modern biotechnological tools. Crit Rev Biotechnol. https://doi.org/10.1080/07388551.2022.2093695

    Article  PubMed  Google Scholar 

  • Raza A, Charagh S, Salehi H, Abbas S, Saeed F, Poinern GE, Siddique KH, Varshney RK (2023) Nano-enabled stress-smart agriculture: Can nanotechnology deliver drought and salinity-smart crops? J Sustain Agric Environ 2:189–214

    Article  Google Scholar 

  • Sadak MS, Dawood MG (2022) Biofertilizer role in alleviating the deleterious effects of salinity on wheat growth and productivity. Gesunde Pflanz 75:1207–1219

    Article  Google Scholar 

  • Saddiq MS, Iqbal S, Afzal I, Ibrahim AM, Bakhtavar MA, Hafeez MB, Jahanzaib, Maqbool MM (2019) Mitigation of salinity stress in wheat (Triticum aestivum L.) seedlings through physiological seed enhancements. J of Plant Nutrition 42:1192–1204

    Article  CAS  Google Scholar 

  • Saddiq MS, Iqbal S, Hafeez MB, Ibrahim AM, Raza A, Fatima EM, Baloch H, Woodrow P, Ciarmiello LF (2021) Effect of salinity stress on physiological changes in winter and spring wheat. Agronomy 11:1193

    Article  CAS  Google Scholar 

  • Sardans J, Peñuelas J (2021) Potassium control of plant functions: ecological and agricultural implications. Plants 10:419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarker U, Oba S (2020) The response of salinity stress-induced A. tricolor to growth, anatomy, physiology, non-enzymatic and enzymatic antioxidants. Front Plant Sci 11:559876

    Article  PubMed  PubMed Central  Google Scholar 

  • Shahid S, Kausar A, Zahra N, Hafeez MB, Raza A, Ashraf MY (2022) Methionine-induced regulation of secondary metabolites and antioxidants in maize (Zea mays L.) subjected to salinity stress. Gesunde Pflanz 75:1143–1155

    Article  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131

    Article  CAS  PubMed  Google Scholar 

  • Tränkner M, Tavakol E, Jákli B (2018) Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiol Plantarum 163:414–431

    Article  Google Scholar 

  • Turcios AE, Papenbrock J, Tränkner M (2021) Potassium, an important element to improve water use efficiency and growth parameters in quinoa (Chenopodium quinoa) under saline conditions. J Agro Crop Sci 207:618–630

    Article  CAS  Google Scholar 

  • Verma T, Bhardwaj S, Raza A, Djalovic I, Prasad PV, Kapoor D (2023) Mitigation of salt stress in Indian mustard (Brassica juncea L.) by the application of triacontanol and hydrogen sulfide. Plant Signal Behav 18:2189371

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang M, Zheng Q, Shen Q, Guo S (2013) The critical role of potassium in plant stress response. Int J Mol Sci 14:7370–7390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waqas M, Yaning C, Iqbal H, Shareef M, Ur Rehman H, Iqbal S, Mahmood S (2019) Soil drenching of paclobutrazol: an efficient way to improve quinoa performance under salinity. Physiol Plantarum 165:219–231

    Article  CAS  Google Scholar 

  • Xu X, Du X, Wang F, Sha J, Chen Q, Tian G, Zhu Z, Ge S, Jiang Y (2020) Effects of potassium levels on plant growth, accumulation and distribution of carbon, and nitrate metabolism in apple dwarf rootstock seedlings. Front Plant Sci 11:904

    Article  PubMed  PubMed Central  Google Scholar 

  • Zahra N, Wahid A, Hafeez MB, Shaukat K, Shahzad S, Shah T, Alyemeni MN (2021) Plant growth promoters alleviate oxidative damages and improve the growth of milk thistle (Silybum marianum L.) under salinity stress. J Plant Growth Regul 41:3091–3116

    Article  Google Scholar 

  • Zahra N, Hafeez MB, Wahid A, Al Masruri MH, Ullah A, Siddique KH, Farooq M (2022) Impact of climate change on wheat grain composition and quality. J Sci Food Agric. https://doi.org/10.1002/jsfa.12289

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are highly thankful to Directorate of Farms, MNS University of Agriculture Multan for support in field experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Amir Bakhtavar or Ali Raza.

Ethics declarations

Conflict of interest

M. Ejaz, M.A. Bakhtavar, S. Iqbal, M.A. Khan, R. Jabeen, N. Jabeen and A. Raza declare that they have no competing interests.

Additional information

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Rights and permissions

Springer Nature oder sein Lizenzgeber (z.B. eine Gesellschaft oder ein*e andere*r Vertragspartner*in) hält die ausschließlichen Nutzungsrechte an diesem Artikel kraft eines Verlagsvertrags mit dem/den Autor*in(nen) oder anderen Rechteinhaber*in(nen); die Selbstarchivierung der akzeptierten Manuskriptversion dieses Artikels durch Autor*in(nen) unterliegt ausschließlich den Bedingungen dieses Verlagsvertrags und dem geltenden Recht.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ejaz, M., Bakhtavar, M.A., Iqbal, S. et al. Soil Application of Potassium Maintains Growth, Water Relations, Yield and Seed Quality of Quinoa in Salt Affected Soils. Journal of Crop Health 76, 287–295 (2024). https://doi.org/10.1007/s10343-023-00929-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-023-00929-x

Keywords

Navigation