Skip to main content

Advertisement

Log in

Effects of Salinity and Proline On Growth and Physiological Characteristics of Three Olive Cultivars

  • Original Article / Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

Crop growth and yield are functions of environmental factors. One of these factors is salt stress which can have harmful effects on plants. Olive is one of the most important Mediterranean plants and is moderately salt tolerant. Various mechanisms have been proposed to regulate plant adaptation and tolerance to salinity stress. Plants are more sensitive to salinity at early growth. This study was carried out in 2019 at Gorgan University of Agricultural Sciences and Natural Resources (altitude: 125 m above sea level, latitude: 36.83 N, and longitude: 54.48 E). In this study, the effects of NaCl (0, 50, 100, and 200 mM) induced salinity and proline foliar spray (0, 100, and 200 mg/L) on olive plantlets (including Arbequina, Arbosana, and Koroneiki cultivars) were investigated. The results showed that root and shoot fresh and dry weights, node number, internode length, shoot number, plant height, and stem diameter reduced as the salt concentration increased from 0–200 mM. On the contrary, there were increases in leaf necrosis, leaf abscission, and plant mortality. Salinity reduced the relative water content of the leaves, chlorophyll, and potassium content, and increased sodium content, electrolyte leakage, and proline content in the leaves. Application of proline ameliorated the adverse effects of salinity on sodium content, potassium content, electrolyte leakage, proline content, total chlorophyll, and chlorophyll b, leaf abscission and necrosis, shoot number, and internode length, but had no significant effect on the other characteristics. The highest toxicity was observed in Arbosana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akça Y, Samsunlu E (2012) The effect of salt stress on growth, chlorophyll content, proline and nutrients accumulation, and K/Na ratio in Walnut. Pak J Bot 44(5):1513–1520

    Google Scholar 

  • Alaee S, Tafazzoli A (2009) The Effect of salinity and plant growth regulators (kinetin and CCC) on vegetative growth in Olive cv. Dezfol. J Plant Ecol 5(17):83–97

    Google Scholar 

  • Ali Q, Ashraf M, Shahbaz M, Humera M (2008) Ameliorating effect of foliar applied proline on nutrient uptake in water stressed maize (Zea mays L.) plants. Pak J Bot 40:211–219

    CAS  Google Scholar 

  • Aliniaeifard S, Tabatabaei SJ, Hajilou J, Seifi Kalhor M (2008) Vegetative and physiological responses of Olive trees to antioxidants and salinity. Int J Hortic Sci Technol 9(4):275–284

    Google Scholar 

  • Ashraf M (2004) Some important physiological selection criteria for salt tolerance in plants. Flora 199:361–376

    Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    CAS  Google Scholar 

  • Bandurska H, Stroinski A (2003) ABA and proline accumulation in leaves and roots of wild (Hordeum spontaneum) and cultivated (Hordeum vulgare Maresi) barley genotypes under deficit water conditions. Acta Physiol Plant 25:55–61

    CAS  Google Scholar 

  • Barnes JD, Balaguer L, Maurigue E, Elvira S, Davison AW (1992) A reappraisal of the use of DMSO for the extraction and determination of chlorophyll ‘a’ and ‘b’ in lichens and higher plants. Environ Exp Bot 32(2):85–100

    CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    CAS  Google Scholar 

  • Chartzoulakis KS (2005) Salinity and olive: Growth, salt tolerance, photosynthesis, and yield. Agric Water Manag 78:108–121

    Google Scholar 

  • Chartzoulakis K, Loupassaki M, Bertaki M, Androulakis I (2002) Effects of NaCl salinity on growth, ion content and CO2 assimilation rate of six olive cultivars. Sci Hortic 96:235–247

    CAS  Google Scholar 

  • Cimatoa A, Castelli BS, Tattini M, Traversia ML (2010) An ecophysiological analysis of salinity tolerance in olive. Environ Exp Bot 68:214–221

    Google Scholar 

  • Comba ME, Benavides MP, Tomaro ML (1998) Effect of salt stress on antioxidant defense system in soybean root nodules. Aust J Plant Physiol 25:665–671

    CAS  Google Scholar 

  • Dawood MG, Taie HAA, Nassar RMA, Abdelhamid MT, Schmidhalter U (2014) The changes induced in the physiological, biochemical, and anatomical characteristics of Vicia faba by the exogenous application of proline under seawater stress. S Afr J Bot 93:54–63

    CAS  Google Scholar 

  • Dolatabadian A, Modarres Sanavi AM, Sharifi M (2009) Effect of leaf feeding by ascorbic acid on antioxidant enzymes activity, proline accumulation, and lipid peroxidation of Canola (Brassica napus L.) under salt stress condition. Sci Technol Agric Nat Resour 47(B):611–620

    Google Scholar 

  • El-Sayed OM, El-Gammal OHM, Salama ASM (2014) Effect of ascorbic acid, proline, and jasmonic acid foliar spraying on fruit set and yield of Manzanillo olive trees under salt stress. Sci Hortic 176:32–37

    CAS  Google Scholar 

  • Elumalai RP, Nagpal P, Reed JW (2002) A mutation in the Arabidopsis KT2/KUP2 potassium transporter gene affects shoot cell expansion. Plant Cell 14:119–131

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eskandari Zanjani K, Shirani Rad AH, Moradi Aghdam A, Taherkhani T (2013) Effect of Salicylic acid application under salinity conditions on physiological and morphological characteristics of Artemisia (Artemisia annua L.). J Crop Ecophysiol 6(4):415–428

    Google Scholar 

  • Fatemy LS, Tabatabaei SJ, Fallahi E (2009) The effect of silicon on the growth and yield of strawberry grown under saline conditions. J Hortic Sci 23(1):88–95

    Google Scholar 

  • Gao Y, Lu Y, Wu M, Liang E, Li Y, Zhang D, Chen J (2016) Ability to remove Na+ and retain K+ correlates with salt tolerance in two maize inbred lines seedlings. Front Plant Sci 7:1716

    PubMed  PubMed Central  Google Scholar 

  • Garg BK (2003) Nutrient uptake and management under drought: nutrient–moisture interaction. Curr Agric 27:1–8

    Google Scholar 

  • Gholami M, Rahemi M (2009) Effect of NaCl salt stress on the physiological and morphological characteristics of vegetative Peach-Almond hybrid (GF677) rootstock. Plant Prod Technol 9(1):21–31

    Google Scholar 

  • Gholami R, Zahedi SM (2019a) Identifying superior drought-tolerant olive genotypes and their biochemical and some physiological responses to various irrigation levels. J Plant Nutr 42(17):2057–2069

    CAS  Google Scholar 

  • Gholami R, Zahedi SM (2019b) Reproductive behavior and water use efficiency of olive trees (Olea europaea L. cv Konservolia) under deficit irrigation and mulching. Erwerbs-Obstbau 61(4):331–336

    Google Scholar 

  • Ghrab M, Gargouria K, Bentaherb H, Chartzoulakisc K, Ayadia M, Mimound MB, Masmoudid MM, Mechliad NB, Psarrasc G (2013) Water relations and yield of the olive tree (cv. Chemlali) in response to partial root-zone drying (PRD) irrigation technique and salinity under arid climate. Agric Water Manag 123:1–11

    Google Scholar 

  • Gucci R, Tattini M (1997) Salinity tolerance in olive. Hortic Rev 21:177–214

    CAS  Google Scholar 

  • Gucci R, Lombardini L, Tattini M (1997) Analysis of leaf water relations in leaves of two olive (Olea europaea) cultivars differing in tolerance to salinity. Tree Physiol 17:13–21

    CAS  PubMed  Google Scholar 

  • Haghnia GH (1989) Directory tolerance of plants to salinity. Research Institute of Forests and Rangelands, Iran

    Google Scholar 

  • Heuer B (2003) Influence of exogenous application of proline and glycine betaine on the growth of salt-stressed tomato plants. Plant Sci 165:693–699

    CAS  Google Scholar 

  • Jamil M, Chunlee C, Rehman SU, Baelee D, Ashraf M, Rha ES (2005) Salinity (NaCl) tolerance of Brassica Species at germination and early seedling growth. Plant Sci 4(4):970–976

    CAS  Google Scholar 

  • Kaya C, Levent Tuna A, Ashraf M, Altunlu H (2007) Improved salt tolerance of melon (Cucumis melo L.) by the addition of proline and potassium nitrate. Environ Exp Bot 60:397–403

    CAS  Google Scholar 

  • Kchaou H, Larbi A, Gargouri K, Chaieb M, Morales F, Msallem M (2010) Assessment of tolerance to NaCl salinity of five olive cultivars, based on growth characteristics and Na+ and Cl exclusion mechanisms. Sci Hortic 124:306–315

    CAS  Google Scholar 

  • Khan MA, Shirazi MU, Mujtaba SM, Islam E, Mumtaz S, Shereen A, Ansari RU, Yasın Ashraf M (2009) Role of proline, K/Na ratio, and chlorophyll content in salt tolerance of wheat (Trıtıcum aestıvum L.). Pak J Bot 41(2):633–638

    Google Scholar 

  • Levitt J (1980) Response of plants to environmental stresses vol II. Academic Press, New York

    Google Scholar 

  • Lo Bianco R, Scalisi A (2017) Water relations and carbohydrate partitioning of four greenhouse-grown olive genotypes under long-term drought. Trees 31(2):717–727

    CAS  Google Scholar 

  • Lutts S, Kinet JM, Bouharmont J (1996) NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann Bot 78:389–398

    CAS  Google Scholar 

  • Maathuis FJM, Sanders D (1996) Mechanisms of potassium absorption by higher plant roots. Plant Physiol 96:158–168

    CAS  Google Scholar 

  • Mansour MMF (2000) Nitrogen containing compounds and adaptation of plants to salinity stress. Plant Biol 43:491–500

    CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 20:239–250

    Google Scholar 

  • Perica S, Goreta S, Selak GV (2008) Growth, biomass allocation, and leaf ion concentration of seven olive (Olea europaea L.) cultivars under increased salinity. Sci Hortic 117:123–129

    CAS  Google Scholar 

  • Rashedy AA, Abd-ElNafea M, Khedr EH (2022) Co-application of proline or calcium and humic acid enhances productivity of salt stressed pomegranate by improving nutritional status and osmoregulation mechanisms. Sci Rep 12(1):1–10

    Google Scholar 

  • Razavizadeh R, Kazem Zadeh M, Enteshari Sh (2013) Effect of paclobutrazol on some physiological indices of rapeseed (Brassica napus L.) seedlings under salt stress conditions. J Crop Physiol 5(19):35–48

    Google Scholar 

  • Sabet Teimouri M, Khazaie HR, Nezami A, Nassiri Mahallati M (2008) Effect of different salinity levels on antioxidant enzymes activity in leaf and physiological characteristics of sesame (Sesame indicum L.). Agric Res Water Soil Plant Agric 7(4):109–119

    Google Scholar 

  • Shahbaz M, Mushtaq Z, Andaz F, Masood A (2013) Does proline application ameliorate adverse effects of salt stress on growth, ions, and photosynthetic ability of eggplant (Solanum melongena L.). Sci Hortic 164:507–511

    CAS  Google Scholar 

  • Sleator RD, Hill C (2002) Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol Rev 26(1):49–71

    CAS  PubMed  Google Scholar 

  • Tabatabaei SJ (2006) Effects of salinity and N on the growth, photosynthesis, and N status of olive (Olea europaea L.) trees. Sci Hortic 108:432–438

    CAS  Google Scholar 

  • Tattini M (1994) Ionic relations of aeroponically-grown olive plants during salt stress. Plant Soil 161:251–256

    Google Scholar 

  • Xing L, Zhu JH (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25:131–139

    Google Scholar 

  • Yan Z, Guo S, Shu S, Sun J, Tezuka T (2011) Effects of proline on photosynthesis, root reactive oxygen species (ROS) metabolism in two melon cultivars (Cucumis melo L.) under NaCl stress. Afr J Biotechnol 10:18381–18390

    CAS  Google Scholar 

  • Yang CW, Lin CC, Kao CH (1999) Endogenous ornithine and arginine content and dark induced proline accumulation in detached rice leans. Plant Physiol 155:665–668

    CAS  Google Scholar 

  • Yang SL, Lan SS, Gong M (2009) Hydrogen peroxide-induced proline and metabolic pathway of its accumulation in maize seedlings. Plant Physiol 166:1694–1699

    CAS  Google Scholar 

Download references

Funding

We gratefully acknowledge Mr. Shahmoradi for providing olive plantlets and Gorgan University of Agricultural Sciences and Natural Resources for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaeil Seifi.

Ethics declarations

Conflict of interest

N. Poury, E. Seifi and M. Alizadeh declare that they have no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poury, N., Seifi, E. & Alizadeh, M. Effects of Salinity and Proline On Growth and Physiological Characteristics of Three Olive Cultivars. Gesunde Pflanzen 75, 1169–1180 (2023). https://doi.org/10.1007/s10343-022-00778-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-022-00778-0

Keywords

Navigation