Skip to main content

Advertisement

Log in

Regeneration dynamics and resilience of unmanaged mountain forests in the Northern Limestone Alps following bark beetle-induced spruce dieback

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Mountain forests provide many important ecosystem services including protection against avalanche and rock fall. These services often depend on a continuity of forest cover and therefore on ecological stability—resistance and resilience to disturbance. Natural regeneration following large-scale disturbance is an important component of forest resilience but in the mountain forests of the Alps is not well understood. This restricts management decision making, particularly in the face of an increased threat to the currently dominant Norway spruce from the bark beetle (Ips typographus). In light of this, we analyzed bark beetle infestation patterns, forest structure, selected tree regeneration characteristics and species composition on 96 study plots on a chronosequence of bark beetle-induced natural forest succession in unmanaged mountain forest ecosystems in southeastern Germany. The most advanced plots were twenty years on from the bark beetle-induced dieback of mature Norway spruce, and the majority were already quite densely stocked. The regeneration was clustered and was dominated by sycamore maple and Norway spruce. Most notably, the proportion of advance regeneration was negligible with the vast majority of the seedlings having germinated after the disturbance event. The findings suggest that these forests are naturally resilient in terms of regeneration if high browsing intensities do not prohibit the establishment of new seedlings. The bark beetle outbreaks appear to have generated an acceleration of development away from human influenced pure Norway spruce forests toward a more natural species composition. Nevertheless, Norway spruce will remain the dominant species for at least the next generation. These findings are important for managers intending to uphold protective forest functions. The integration of naturally evolving gaps as elements which diversify environmental conditions on the forest stand level as well as on the landscape scale is recommended for close-to-nature forest management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ammer C (1996a) Impact of ungulates on structure and dynamics of natural regeneration of mixed mountain forests in the Bavarian Alps. For Ecol Manag 88(1–2):43–53. doi:10.1016/S0378-1127(96)03808-X

    Article  Google Scholar 

  • Ammer C (1996b) Konkurrenz um Licht. Zur Entwicklung der Naturverjüngung im Bergmischwald. Forstliche Forschungsberichte München 158:1–198

    Google Scholar 

  • Ammer C (1998) Die Fichte in der natürlichen Verjüngung des Bergmischwaldes. AFZ-Der Wald 8:396–399

    Google Scholar 

  • Ammer C, Vor T, Knoke T, Wagner S (2010) Der Wald-Wild-Konflikt. Analyse und Lösungsansätze vor dem Hintergrund rechtlicher, ökologischer und ökonomischer Zusammenhänge. Göttinger Forstwissenschaften 5:1–184

    Google Scholar 

  • Ammer C, Balandier P, Bentsen NS, Coll L, Löf M (2011) Forest vegetation management under debate: an introduction. Eur J For Res 130:1–5. doi:10.1007/s10342-010-0452-6

    Article  Google Scholar 

  • Attiwill PM (1994) The disturbance of forest ecosystems: the ecological basis for conservative management. For Ecol Manag 63:247–300. doi:10.1016/0378-1127(94)90114-7

    Article  Google Scholar 

  • Baddeley A, Turer R, Rubak E (2014) Pakage “spatstat” Spatial Point Pattern analysis, model-fitting, simulation, tests. Online: http://cran.r-project.org

  • Baier R, Meyer J, Göttlein A (2007) Regeneration niches of Norway spruce (Picea abies [L.] Karst.) saplings in small canopy gaps in mixed mountain forests of the Bavarian Limestone Alps. Eur J For Res 126(1):11–22. doi:10.1007/s10342-005-0091-5

    Article  Google Scholar 

  • Batllori E, Gutiérrez E (2008) Regional tree line dynamics in response to global change in the Pyrenees. J Ecol 96:1275–1288. doi:10.1111/j.1365-2745.2008.01429.x

    Article  Google Scholar 

  • Bauer ML (2002) Walddynamik nach Borkenkäferbefall in den Hochlagen des Bayerischen Waldes. Dissertation, Technische Universität München

  • Bauhus J, Puettmann KJ, Messier C (2009) Silviculture for old-growth attributes. For Ecol Manag 258:525–537. doi:10.1016/j.foreco.2009.01.053

    Article  Google Scholar 

  • Beers T, Dress P, Wensel L (1966) Aspect transformation in site productivity research. J For Res 64:691–692

    Google Scholar 

  • Beniston M, Stephenson DB, Christensen OB, Ferro CA, Frei C, Goyette S et al (2007) Future extreme events in European climate: an exploration of regional climate model projections. Clim Change 81:71–95. doi:10.1007/s10584-006-9226-z

    Article  Google Scholar 

  • Brang P (1996) Ansamungsgunst und Verteilung der Direktstrahlung in schlitzförmigen Bestandesöffnungen zwischenalpiner Fichtenwälder. Schweiz Z Forstwes 147(10):761–784

    Google Scholar 

  • Brang P (2001) Resistance and elasticity: promising concepts for the management of protection forests in the European Alps. For Ecol Manag 145:107–119. doi:10.1016/S0378-1127(00)00578-8

    Article  Google Scholar 

  • Brang P, Moran J, Puttonen P, Vyse A (2003) Regeneration of Picea engelmannii and Abies lasiocarpa in high-elevation forests of south-central British Columbia depends on nurse-logs. For Chron 79(2):273–279

    Article  Google Scholar 

  • Braun-Blanquet J (1964) Pflanzensoziologie, 3rd edn. Springer, Wien

    Book  Google Scholar 

  • Bruelheide H, Luginbühl U (2009) Peeking at ecosystem stability: making use of a natural disturbance experiment to analyze resistance and resilience. Ecology 90(5):1314–1325. doi:10.1890/07-2148.1

    Article  PubMed  Google Scholar 

  • Clark PJ, Evans FC (1954) Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35(4):445–453. doi:10.2307/1931034

    Article  Google Scholar 

  • Cremer E, Ziegenhagen B, Schulerowitz K, Mengel C, Donges K, Bialozyt R et al (2012) Local seed dispersal in European silver fir (Abies alba Mill.): lessons learned from a seed trap experiment. Trees 26(3):987–996. doi:10.1007/s00468-012-0676-9

    Article  Google Scholar 

  • Diaci J (2002) Regeneration dynamics in a Norway spruce plantation on a silver fir-beech forest site in the Slovenian Alps. For Ecol Manag 161:27–38. doi:10.1016/S0378-1127(01)00492-3

    Article  Google Scholar 

  • Diaci J, Pisek R, Boncina A (2005) Regeneration in experimental gaps of subalpine Picea abies forest in the Slovenian Alps. Eur J For Res 124(1):29–36. doi:10.1007/s10342-005-0057-7

    Article  Google Scholar 

  • Donato DC, Campbell JL, Franklin JF (2012) Multiple successional pathways and precocity in forest development: can some forests be born complex? J Veg Sci 23(3):576–584. doi:10.1111/j.1654-1103.2011.01362.x

    Article  Google Scholar 

  • Dorren LK, Berger F, Imeson AC, Maier B, Rey F (2004) Integrity, stability and management of protection forests in the European Alps. For Ecol Manag 195(1–2):165–176. doi:10.1016/j.foreco.2004.02.057

    Article  Google Scholar 

  • El Kateb H, Schölch M, Mosandl R (2009) Waldbau-Verfahren für den Bergmischwald Empfehlungen für die Praxis auf wissenschaftlicher Grundlage. LWF aktuell 71:9–11

    Google Scholar 

  • Ellenberg H, Leuschner C (2010) Vegetation Mitteleuropas mit den Alpen. Ulmer, Stuttgart

    Google Scholar 

  • Fischer A (1998) Verjüngung und Wiederbewaldung in den Hochlagen des Nationalparks Bayerischer Wald In: Bayerische Landesanstalt für Wald und Forstwirtschaft (1998): Borkenkäferproblematik im Nationalpark Bayerischer Wald. Ergebnisse des internationalen Expertengremiums. Nationalparkverwaltung Bayerischer Wald, Grafenau

  • Franklin JF, Spies TA, van Pelt R, Carey AB, Thornburgh DA, Berg DR et al (2002) Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. For Ecol Manag 155(1–3):399–423. doi:10.1016/S0378-1127(01)00575-8

    Article  Google Scholar 

  • Frehner M, Wasser B, Schwitter R (2005) Nachhaltigkeit und Erfolgskontrolle im Schutzwald Wegleitung für Pflegemassnahmen in Wäldern mit Schutzfunktion. Bundesamt für Umwelt, Wald und Landschaft (BUWAL), Bern

    Google Scholar 

  • Frich P, Alexander LV, Della-Marta P, Gleason B, Haylock M, Klein Tank A, Peterson T (2002) Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim Res 19:193–212. doi:10.3354/cr019193

    Article  Google Scholar 

  • Gill RMA, Beardall V (2001) The impact of deer on woodlands: the effects of browsing and seed dispersal on vegetation structure and composition. Forestry 74:209–218. doi:10.1093/forestry/74.3.209

    Article  Google Scholar 

  • Grimm V, Wissel C (1997) Babel, or the ecological stability discussions: an inventory and analysis of terminology and a guide for avoiding confusion. Oecologia 109:323–334. doi:10.1007/s004420050090

    Article  Google Scholar 

  • Hartl-Meier C, Dittmar C, Zang C, Rothe A (2014) Mountain forest growth response to climate change in the Northern Limestone Alps. Trees 28:819–829. doi:10.1007/s00468-014-0994-1

    Article  Google Scholar 

  • Hein S, Collet C, Ammer C, Le Goff N, Skovsgaard JP, Savill P (2009) A review of growth and stand dynamics of Acer pseudoplatanus L. in Europe: implications for Silviculture. Forestry 82(4):361–385. doi:10.1093/forestry/cpn043

    Article  Google Scholar 

  • Heinze E, Boch S, Fischer M, Hessenmöller D, Klenk B, Müller J et al (2011) Habitat use of large ungulates in northeastern Germany in relation to forest management. For Ecol Manag 261:288–296. doi:10.1016/j.foreco.2010.10.022

    Article  Google Scholar 

  • Heurich M, Baierl F, Zeppenfeld T (2012) Waldentwicklung im Nationalpark Bayerischer Wald in den Jahren 2006 bis 2011. Ergebnisse der Luftbildauswertung und Hochlageninventur. Nationalparkverwaltung Bayerischer Wald. Berichte aus dem Nationalpark 8/12

  • Höllerl S (2009a) Auswirkungen von waldbaulichen Maßnahmen auf die Stabilität (Resistenz und Elastizität) von Fichtenreinbeständen in der Bergmischwaldstufe der Bayerischen Alpen. Forstliche Forschungsberichte München 207:1–268

    Google Scholar 

  • Höllerl S (2009b) Berücksichtigung finanzieller Aspekte bei waldbaulichen Entscheidungen - eine Fallstudie für reine Fichtenbestände in der Bergmischwaldzone. Forstarchiv 80:4–14

    Google Scholar 

  • Höllerl S, Mosandl R (2009) Der Bergahorn im Bergmischwald – unübertroffen in seinem Verjüngungspotential. LWF Wissen 62:24–29

    Google Scholar 

  • Hothorn T, Bretz F, Westfal P, Heiberger RM, Schuetzenmeister A (2013). Package “multcomp” Simultaneous Inference in General Parametric Models. Online: http://cran.r-project.org

  • Hothorn T, Hornik K, van de Wiel, MA, Zeileis A (2014) Package “coin” conditional inference procedures in a permutation test framework. Online: http://cran.r-project.org

  • Jehl H (2001) Die Waldentwicklung nach Windwurf in den Hochlagen des Nationalparks Bayerischer Wald In: Nationalparkverwaltung Bayerischer Wald (2001): Waldentwicklung im Bergwald nach Windwurf und Borkenkäferbefall. Nationalparkverwaltung Bayerischer Wald. Wissenschaftliche Reihe 14

  • Jonášová M, Prach K (2004) Central-European mountain spruce (Picea abies (L.) Karst.) forests: regeneration of tree species after a bark beetle outbreak. Ecol Eng 23(1):15–27. doi:10.1016/j.ecoleng.2004.06.010

    Article  Google Scholar 

  • Kärvemo S, Rogell B, Schroeder M (2014) Dynamics of spruce bark beetle infestation spots: Importance of local population size and landscape characteristics after a storm disturbance. For Ecol Manag 334:232–240. doi:10.1016/j.foreco.2014.09.011

    Article  Google Scholar 

  • Keidel S, Meyer P, Bartsch N (2008) Regeneration eines naturnahen Fichtenwaldökosystems im Harz nach großflächiger Störung. Forstarchiv 79:187–196

    Google Scholar 

  • Kennel E (1973) Bayerische Waldinventur 1970/71 Inventurabschnitt 1: Großrauminventur Aufnahme- und Auswertungsverfahren. Forschungsberichte der Forstlichen Forschungsanstalt München 11

  • Klopcic M, Klemen J, Boncina A (2010) Long-term changes of structure and tree species composition in Dinaric uneven-aged forests: are red deer an important factor? Eur J For Res 129:277–288. doi:10.1007/s10342-009-0325-z

    Article  Google Scholar 

  • Knott H, Bernhart A, Feulner M (1988) Geschichte der Salinenwälder von Berchtesgaden. Nationalpark Berchtesgaden, Forschungsbericht 12

    Google Scholar 

  • Konnert V, Siegrist J (2000) Waldentwicklung im Nationalpark Berchtesgaden von 1983 bis 1997. Nationalpark Berchtesgaden, Forschungsbericht 43

    Google Scholar 

  • Konnert M, Schneck D, Zollner A (2014) Blühen und Fruktifizieren unserer Waldbäume in den letzten 60 Jahren. LWF Wissen 74:37–45

    Google Scholar 

  • Körner C (2007) The use of ‘altitude’ in ecological research. Trends Ecol Evol 22(11):569–574. doi:10.1016/j.tree.2007.09.006

    Article  PubMed  Google Scholar 

  • Köstler J, Mayer H (1974) Gutachten über die künftige Behandlung des Waldes im Alpenpark Berchtesgadener Land. München

  • Kräuchi N, Brang P, Schönenberger W (2000) Forests of mountainous regions: gaps in knowledge and research needs. For Ecol Manag 132:73–82. doi:10.1016/S0378-1127(00)00382-0

    Article  Google Scholar 

  • Krehan H, Steyrer G (2006) Klimaänderung – Schadorganismen bedrohen unsere Wälder. BFW-Praxisinformation 10:15–17

    Google Scholar 

  • Kupferschmid Albisetti AD, Brang P, Schönenberger W, Bugmann H (2003) Decay of Picea abies snag stands on steep mountain slopes. For Chron 79(2):247–252

    Article  Google Scholar 

  • Kupferschmid AD, Bugmann H (2005) Effect of microsites, logs and ungulate browsing on Picea abies regeneration in a mountain forest. For Ecol Manag 205(1–3):251–265. doi:10.1016/j.foreco.2004.10.008

    Article  Google Scholar 

  • Kupferschmid AD, Schönenberger W, Wasem U (2002) Tree regeneration in a Norway spruce snag stand after tree die-back caused by Ips typographus. For Snow Landsc Res 77(1/2):149–160

    Google Scholar 

  • Küßner R (1997) Secondary succession processes in spruce (Picea abies) stands of the eastern Erzgebirge—possibilities for silvicultural control and their relevance for an ecologically based forest conversion. Forstwiss Cbl 116(2):359–369

    Google Scholar 

  • Kutter M, Gratzer G (2006) Neue Methoden zur Abschätzung der Samenverbreitungsdistanzen von Waldbäumen am Beispiel der Verbreitung von Picea abies, Abies alba und Fagus sylvatica. Austr J For Sci 123(3):103–120

    Google Scholar 

  • Lausch A, Fahse L, Heurich M (2011) Factors affecting the spatio-temporal dispersion of Ips typographus (L.) in Bavarian Forest National Park: A long-term quantitative landscape-level analysis. For Ecol Manage 261:233–245. doi:10.1016/j.foreco.2010.10.012

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. 2nd English edn. Elsevier, Amsterdam

  • Lehnert LW, Bässler C, Brandl R, Burton PJ, Müller J (2013) Conservation value of forests attacked by bark beetles: highest number of indicator species is found in early successional stages. J Nat Conserv 21(2):97–104. doi:10.1016/j.jnc.2012.11.003

    Article  Google Scholar 

  • Litschauer R (2014) Untersuchungen zur Samenproduktion österreichischer Waldbäume. BFW. Online: http://bfw.ac.at/020/2259.html. Assessed 20 Oct 2014

  • Martin TG, Arcese P, Scheerder N (2011) Browsing down our natural heritage: Deer impacts on vegetation structure and songbird populations across an island archipelago. Biol Conserv 144:459–469. doi:10.1016/j.biocon.2010.09.033

    Article  Google Scholar 

  • Meddens AJH, Hicke JA (2014) Spatial and temporal patterns of Landsat-based detection of tree mortality caused by a mountain pine beetle outbreak in Colorado, USA. For Ecol Manag 322:78–88. doi:10.1016/j.foreco.2014.02.037

    Article  Google Scholar 

  • Meddens AJH, Hicke JA, Ferguson CA (2012) Spatiotemporal patterns of observed bark beetle-caused tree mortality in British Columbia and the western United States. Ecol Appl 22(7):1876–1891

    Article  PubMed  Google Scholar 

  • Meister G (1969) Überlegungen zur künftigen Betriebsgestaltung im oberbayerischen Hochgebirge. Forstwiss Centralbl 88:202–230

    Article  Google Scholar 

  • Meyer P (2013) Wie schnell werden Wirtschaftswälder zu Urwäldern? AFZ-Der Wald 24:11–13

    Google Scholar 

  • Meyer P, Petersen R (2003) Regeneration naturnaher Fichtenwälder nach großflächigen Störungen - Beispiele aus dem Harz. Forst und Holz 58(13/14):401–406

    Google Scholar 

  • Motta R (1996) Impact of wild ungulates on forest regeneration and tree composition of mountain forests in the Western Italian Alps. For Ecol Manag 88(1–2):93–98. doi:10.1016/S0378-1127(96)03814-5

    Article  Google Scholar 

  • Müller J, Bußler H, Goßner M, Rettelbach T, Duelli P (2008) The European spruce bark beetle Ips typographus in a national park: from pest to keystone species. Biodivers Conser. 17(12):2979–3001. doi:10.1007/s10531-008-9409-1

    Article  Google Scholar 

  • Nationalpark Berchtesgaden (2001) Nationalparkplan. Nationalpark Berchtesgaden

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB et al (2012) Package “vegan” Community Ecology Package. Online: http://cran.r-project.org

  • Ott E, Lüscher F, Frehner M, Brang P (1991) Verjüngungsökologische Besonderheiten im Gebirgsfichtenwald im Vergleich zur Bergwaldstufe. Schweiz Z Forstwes 142(11):879–904

    Google Scholar 

  • Otto H-J (1994) Waldökologie. Ulmer, Stuttgart

    Google Scholar 

  • Overbeck M, Schmidt M (2012) Modelling infestation risk of Norway spruce by Ips typographus (L.) in the Lower Saxon Harz Mountains (Germany). For Ecol Manag 266:115–125. doi:10.1016/j.foreco.2011.11.011

    Article  Google Scholar 

  • Papaik MJ, Canham CD (2006) Species resistance and community response to wind disturbance regimes in northern temperate forests. J Ecol 94:1011–1026. doi:10.1111/j.1365-2745.2006.01153.x

    Article  Google Scholar 

  • Pellerin M, Saïd S, Richard E, Hamann J-L, Dubois-Coli C, Hum P (2010) Impact of deer on temperate forest vegetation and woody debris as protection of forest regeneration against browsing. For Ecol Manag 260:429–437. doi:10.1016/j.foreco.2010.04.031

    Article  Google Scholar 

  • Prietzel J (2010) Schutzwälder der Nördlichen Kalkalpen: Verjüngung, Mikroklima, Schneedecke und Schalenwild. Protection forests in the Northern Limestone Alps: stand regeneration, microclimate, snow cover and ungulates. Swiss Forestry Journal 161 (1): 12–22. doi: 10.3188/szf.2010.0012

  • Prietzel J, Ammer C (2008) Montane Bergmischwälder der Bayerischen Kalkalpen: Reduktion der Schalenwilddichte steigert nicht nur den Verjüngungserfolg, sondern auch die Bodenfruchtbarkeit. Allg Forst- u J- Ztg 179(5/6):104–112

    Google Scholar 

  • Puettmann KJ, Ammer C (2007) Trends in North American and European regeneration research under the ecosystem management paradigm. Eur J For Res 126(1):1–9. doi:10.1007/s10342-005-0089-z

    Article  Google Scholar 

  • Rammig A, Fahse L, Bugmann H, Bebi P (2006) Forest regeneration after disturbance: A modelling study for the Swiss Alps. For Ecol Manag 222(1–3):123–136. doi:10.1016/j.foreco.2005.10.042

    Article  Google Scholar 

  • Regent Instruments Inc. (2003) WinScanopy 2003b for hemispherical image analysis. Québec. Online: http://www.regentinstruments.com

  • Roberts MR (2004) Response of the herbaceous layer to natural disturbance in North American forests. Can J Bot 82(9):1273–1283. doi:10.1139/B04-091

    Article  Google Scholar 

  • Schelhaas M-J, Nabuurs G-J, Schuck A (2003) Natural disturbances in the European forests in the 19th and 20th centuries. Glob Change Biol 9:1620–1633. doi:10.1046/j.1529-8817.2003.00684.x

    Article  Google Scholar 

  • Schönenberger W (2002) Post windthrow stand regeneration in Swiss mountain forests: the first ten years after the 1990 storm Vivian. For Snow Landsc Res 77(1/2):61–80

    Google Scholar 

  • Seidl R, Schelhaas M-J, Lindner M, Lexer MJ (2009) Modeling bark beetle disturbances in a large scale forest scenario model to assess climate change impacts and evaluate adaptive management strategies. Reg Environ Change 9:101–119. doi:10.1007/s10113-008-0068-2

    Article  Google Scholar 

  • Seidl R, Schelhaas M-J, Lexer MJ (2011) Unraveling the drivers of intensifying forest disturbance regimes in Europe. Glob Change Biol 17(9):2842–2852. doi:10.1111/j.1365-2486.2011.02452.x

    Article  Google Scholar 

  • Seidl R, Schelhaas M-J, Rammer W, Verkerk PJ (2014) Increasing forest disturbances in Europe and their impact on carbon storage. Nat Clim Change 4:806–810. doi:10.1038/NCLIMATE2318

    Article  CAS  Google Scholar 

  • Senn J, Schönenberger W (2001) Zwanzig Jahre Versuchsaufforstung Stillberg: Überleben und Wachstum einer subalpinen Aufforstung in Abhängigkeit vom Standort. Schweiz Z Forstwes 152(6):226–246

    Article  Google Scholar 

  • Sokal RM, Rohlf FJ (1995) Biometry. Freeman, New York

    Google Scholar 

  • Spandau L (1988) Angewandte Ökosystemforschung im Nationalpark Berchtesgaden. Nationalpark Berchtesgaden, Forschungsbericht 20

    Google Scholar 

  • Spies TA, Franklin JF (1991) The structure of natural young, mature, and old-growth Douglas-fir forests. In: Ruggiero LF, Aubry KB, Carey AB, Huff MH (Eds) Wildlife and Vegetation of Unmanaged Douglas-fir Forests. USDA Forest Service General Technical Report PNW-GTR-285: 91–110

  • Storaunet KO, Rolstad J (2002) Time since death and fall of Norway spruce logs in old-growth and selective cut boreal forest. Can J For Res 32:1801–1812. doi:10.1139/X02-105

    Article  Google Scholar 

  • Swanson ME, Franklin JF, Beschta RL, Crisafulli CM, DellaSalla DA, Hutto RL et al (2011) The forgotten stage of forest succession: early successional ecosystems on forest sites. Front Ecol Environ 9:117–125. doi:10.1890/090157

    Article  Google Scholar 

  • Turner MG, Donato DC, Romme WH (2013) Consequences of spatial heterogeneity for ecosystem services in changing forest landscapes: priorities for future research. Landsc Ecol 28:1081–1097. doi:10.1007/s10980-012-9741-4

    Article  Google Scholar 

  • von Pechmann H (1932) Beiträge zur Geschichte der Forstwirtschaft im oberbayerischen Hochgebirge. Forstwiss Centralbl 54: 605–622, 645–661, 693–709, 721–734

  • Wagner S (1998) Calibration of grey values of hemispherical photographs for image analysis. Agric For Meteorol 90(2):103–117. doi:10.1016/S0168-1923(97)00073-7

    Article  Google Scholar 

  • Wagner S (2001) Relative radiance measurements and zenith angle dependent segmentation in hemispherical photography. Agric For Meteorol 107:103–115. doi:10.1016/S0168-1923(00)00232-X

    Article  Google Scholar 

  • Wagner S, Collet C, Madsen P, Nakashizuka T, Nyland RD, Sagheb-Talebi K (2010) Beech regeneration research: From ecological to silvicultural aspects. For Ecol Manag 259:2172–2182. doi:10.1016/j.foreco.2010.02.029

    Article  Google Scholar 

  • Wäldchen J, Schulze ED, Mund M, Winkler B (2011) Der Einfluss politischer, rechtlicher und wirtschaftlicher Rahmenbedingungen des 19. Jahrhunderts auf die Bewirtschaftung der Wälder im Hainich-Dün-Gebiet (Nordthüringen). Forstarchiv 82:35–47. doi:10.2376/0300-4112-82-35

    Google Scholar 

  • Walentowski H, Ewald J, Fischer A, Kölling C, Türk W (2006) Handbuch der natürlichen Waldgesellschaften Bayerns Ein auf geobotanischer Grundlage entwickelter Leitfaden für die Praxis in Forstwirtschaft und Naturschutz, 2nd edn. Geobotanica Verlag, Freising

    Google Scholar 

  • Westfall P, Young S (1993) Resampling-based multiple testing. Wiley, New York

    Google Scholar 

  • White MA (2012) Long-term effects of deer browsing: composition, structure and productivity in a northeastern Minnesota old-growth forest. For Ecol Manag 269:222–228. doi:10.1016/j.foreco.2011.12.043

    Article  Google Scholar 

  • Wild J, Kopecký M, Svoboda M, Zenáhlíková J, Edwards-Jonášová M, Herben T, Vandvik V (2014) Spatial patterns with memory: tree regeneration after stand-replacing disturbance in Picea abies mountain forests. J Veg Sci 25(6):1327–1340. doi:10.1111/jvs.12189

    Article  Google Scholar 

  • Winter M-B, Ammer C, Baier R, Donato DC, Seibold S, Müller J (2015) Multi-taxon alpha diversity following bark beetle disturbance: evaluating multi-decade persistence of a diverse early-seral phase. For Ecol Manag 338:32–45. doi:10.1016/j.foreco.2014.11.019

    Article  Google Scholar 

  • Wohlgemuth T, Kull P, Wüthrich H (2002) Disturbance of microsites and early tree regeneration after windthrow in Swiss mountain forests due to the winter storm Vivian 1990. For Snow Landsc Res 77(1/2):17–47

    Google Scholar 

  • Zenner EK (2000) Do residual trees increase structural complexity in Pacific Northwest coniferous forests? Ecol Appl 10(3):800–810. doi:10.2307/2641046

    Article  Google Scholar 

  • Zielonka T (2006) When does dead wood turn into a substrate for spruce replacement? J Veg Sci 17:739–746. doi:10.1111/j.1654-1103.2006.tb02497

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the numerous forest students who supported the inventory of stand and regeneration attributes in the field in 2012 and 2013. We also thank the Bavarian State Ministry for the Environment and Public Health (StMUG), for funding the research project “Forest dynamics following spruce bark beetle calamities in the National Park Berchtesgaden.” The origin of funding had no effect on the outcomes of this research. Finally, we thank Rob Coventry for very helpful linguistic corrections and two anonymous reviewers for valuable comments on a previous version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria-Barbara Winter.

Additional information

Communicated by Gediminas Brazaitis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winter, MB., Baier, R. & Ammer, C. Regeneration dynamics and resilience of unmanaged mountain forests in the Northern Limestone Alps following bark beetle-induced spruce dieback. Eur J Forest Res 134, 949–968 (2015). https://doi.org/10.1007/s10342-015-0901-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-015-0901-3

Keywords

Navigation