Skip to main content

Advertisement

Log in

Modelling bark beetle disturbances in a large scale forest scenario model to assess climate change impacts and evaluate adaptive management strategies

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

To study potential consequences of climate-induced changes in the biotic disturbance regime at regional to national scale we integrated a model of Ips typographus (L. Scol. Col.) damages into the large-scale forest scenario model EFISCEN. A two-stage multivariate statistical meta-model was used to upscale stand level damages by bark beetles as simulated in the hybrid forest patch model PICUS v1.41. Comparing EFISCEN simulations including the new bark beetle disturbance module against a 15-year damage time series for Austria showed good agreement at province level (R² between 0.496 and 0.802). A scenario analysis of climate change impacts on bark beetle-induced damages in Austria’s Norway spruce [Picea abies (L.) Karst.] forests resulted in a strong increase in damages (from 1.33 Mm³ a−1, period 1990–2004, to 4.46 Mm³ a−1, period 2095–2099). Studying two adaptive management strategies (species change) revealed a considerable time-lag between the start of adaptation measures and a decrease in simulated damages by bark beetles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anonymous (1997) Ergebnisse der Österreichischen Waldinventur 1992 bis 1996. Mit Vergleichsdaten 1986 bis 1990. Forstliche Bundesversuchsanstalt—Waldforschungszentrum Wien. CD-ROM

  • Anonymous (2002) Ergebnisse der Österreichischen Waldinventur 2000–2002. Bundesforschungs- und Ausbildungszentrum für Wald, Naturgefahren und Landschaft (BFW) Wien. http://web.bfw.ac.at/i7/oewi.oewi0002. 7 January 2006

  • Ayres MP, Lombardero MJ (2000) Assessing the consequences of global change for forest disturbance from herbivores and pathogens. Sci Total Environ 262:263–286. doi:10.1016/S0048-9697(00)00528-3

    Article  CAS  Google Scholar 

  • Baier P, Pennerstorfer J, Schopf A (2007) PHENIPS—a comprehensive phenology model for risk assessment of outbreaks of the European spruce bark beetle, Ips typographus (L.) (Col., Scolytidae). For Ecol Manage 249:171–186

    Article  Google Scholar 

  • Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK et al (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Change Biol 8:1–16. doi:10.1046/j.1365-2486.2002.00451.x

    Article  Google Scholar 

  • Botkin DB (1993) Forest dynamics: an ecological model. Oxford University Press, Oxford, p 309

    Google Scholar 

  • Candau JN, Fleming RA (2005) Landscape-scale spatial distribution of spruce budworm defoliation in relation to bioclimatic conditions. Can J Res 35:2218–2232. doi:10.1139/x05-078

    Article  Google Scholar 

  • Currie WS, Nadelhoffer JK, Aber JD (1999) Soil detrital processes controlling the movement of 15N tracers to forest vegetation. Ecol Appl 9:87–102

    Google Scholar 

  • Dale VH, Joyce LA, McNulty S, Neilson RP (2000) The interplay between climate change, forests, and disturbances. Sci Total Environ 262:201–204. doi:10.1016/S0048-9697(00)00522-2

    Article  CAS  Google Scholar 

  • Donaubauer E, Krehan H, Tomiczek C (1995) Forstschadenssituation in Österreich. AFZ Der Wald 07(95):376–379

    Google Scholar 

  • Donaubauer E, Krehan H, Tomiczek C (1996) Forstschadenssituation in Österreich. AFZ Der Wald 07(96):386–388

    Google Scholar 

  • EEA (2006) How much bioenergy can Europe produce without harming the environment? European Environment Agency. EEA report 07/2006, Copenhagen. ISSN 1725-9177, pp 67

  • Eriksson M, Pouttu A, Roininen H (2005) The influence of windthrow area and timber characteristics on colonization of wind-felled spruces by Ips typographus (L.). For Ecol Manage 216:105–116

    Article  Google Scholar 

  • Eriksson M, Neuvonen S, Roininen H (2007) Retention of wind-felled trees and the risk of consequential tree mortality by the European spruce bark beetle Ips typographus in Finland. Scand J For Res 22:516–523. doi:10.1080/02827580701800466

    Article  Google Scholar 

  • Eriksson M, Neuvonen S, Roininen H (2008) Ips typographus (L.) attack on patches of felled trees: “Wind-felled” vs. cut trees and the risk of subsequent mortality. For Ecol Manage 255:1336–1341

    Article  Google Scholar 

  • Faraway JJ (2006) Extending the linear model with R: generalized linear, mixed effects and nonparametric regression models. Chapman and Hall, Boca Raton. 301 pp

  • Göthlin E, Schroeder LM, Lindelöw A (2000) Attacks by Ips typographus and Pityogenes chalcographus on windthrown spruces (Picea abies) during the two years following a storm felling. Scand J For Res 15:542–549. doi:10.1080/028275800750173492

    Article  Google Scholar 

  • Harrington R, Fleming RA, Woiwood IP (2001) Climate change impacts on insect management and conservation in temperate regions: can they be predicted? Agric For Entomol 3:233–240. doi:10.1046/j.1461-9555.2001.00120.x

    Article  Google Scholar 

  • IPCC (2000) Emissions Scenarios 2000. Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 570

  • Jönsson AM, Harding S, Bärring L, Ravn HP (2007) Impact of climate change on the population dynamics of Ips typographus in southern Sweden. Agric Meteorol 146:70–81. doi:10.1016/j.agrformet.2007.05.006

    Article  Google Scholar 

  • Kilian W, Müller F, Starlinger F (1994) Die forstlichen Wuchsgebiete Österreichs. Eine Naturraumgliederung nach waldökologischen Gesichtspunkten. Bericht 82, Forstliche Bundesversuchsanstalt, Wien. ISSN 0374-9037. pp 60

  • Krehan H (1993) Forstschadenssituation in Österreich. AFZ Der Wald 07/93:352–354

    Google Scholar 

  • Krehan H, Steyrer G (2004) Borkenkäferkalamität 2003. Forstschutz Aktuell 31, Bundesforschungs- und Ausbildungszentrum für Wald, Naturgefahren und Landschaft (BFW) Wien, ISSN 1815-5103. pp 10–12

  • Krehan H, Steyrer G (2005) Borkenkäfer-Monitoring und Borkenkäfer-Kalamität 2004. Forstschutz Aktuell 33, Bundesforschungs- und Ausbildungszentrum für Wald, Naturgefahren und Landschaft (BFW) Wien, ISSN 1815–5103, pp 12–14

  • Krehan H, Steyrer G (2006) Borkenkäfersituation und Borkenkäfer-Monitoring 2005. Forstschutz aktuell 35, Bundesforschungs- und Ausbildungszentrum für Wald, Naturgefahren und Landschaft (BFW), Wien. ISSN 1815–5103, pp 10–14

  • Kurz WA, Stinson G, Rampley GJ, Dymond CC, Neilson ET (2008) Risk of natural disturbances makes future contribution of Canada’s forests to the global carbon cycle highly uncertain. Proc Natl Acad Sci USA 105:1551–1555. doi:10.1073/pnas.0708133105

    Article  CAS  Google Scholar 

  • Landsberg JJ, Waring RH (1997) A generalized model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. For Ecol Manage 95:209–228

    Article  Google Scholar 

  • Leckebusch GC, Ulbrich U (2004) On the relationship between cyclones and extreme windstorm events over Europe under climate change. Global Planet Change 44:181–193. doi:10.1016/j.gloplacha.2004.06.011

    Article  Google Scholar 

  • Leitgeb E, Englisch M (2006) Klimawandel- Standörtliche Rahmenbedingungen für die Forstwirtschaft. BFW Praxisinformation 10. Bundesforschungs- und Ausbildungszentrum für Wald, Naturgefahren und Landschaft (BFW), ISSN 1815-3895. Wien, pp 9–11

  • Lexer MJ (1995) Beziehungen zwischen der Anfälligkeit von Fichtenbeständen (Picea abies (L.) Karst.) für Borkenkäferschäden und Standorts- und Bestandesmerkmalen unter besonderer Berücksichtigung der Wasserversorgung. Dissertation, University of Natural Resource Management and Applied Life Sciences (BOKU) Vienna, pp 210

  • Lexer M, Hönninger K (1998) Estimating physical soil parameters for sample plots of large-scale forest inventories. For Ecol Manage 111:231–247

    Article  Google Scholar 

  • Lexer MJ, Hönninger K (2001) A modified 3D-patch model for spatially explicit simulation of vegetation composition in heterogeneous landscapes. For Ecol Manage 144:43–65

    Article  Google Scholar 

  • Lexer MJ, Hönninger K, Scheifinger H, Matulla C, Groll N, Kromp-Kolb H, Schadauer K, Starlinger F, Englisch M (2002) The sensitivity of Austrian forests to scenarios of climatic change: a large scale risk assessment based on a modified gap model and forest inventory data. For Ecol Manage 162:53–72

    Article  Google Scholar 

  • Lindner M (2000) Developing adaptive forest management strategies to cope with climate change. Tree Physiol 20:299–307

    Google Scholar 

  • Mäkelä A, Landsberg J, Ek AR, Burk TE, Ter-Mikaelian M, Agren GI et al (2000) Process-based models for forest ecosystem management: current state of the art and challenges for practical implementation. Tree Physiol 20:289–298

    Google Scholar 

  • Marschall J (1975) Hilfstafeln für die Forsteinrichtung. Österreichischer Agrarverlag, Wien. pp 199 

  • Mitchell TD, Carter TR, Jones PD, Hulme M, New M (2004) A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: the observed record (1901–2000) and 16 scenarios (2001–2100). Tyndall Centre Working Paper 55, pp 25

  • Müller F (1994) Müssen wir waldbauliche Konzepte ändern? In: Geburek T, Müller F, Schultze U (eds) Klimaänderung in Österreich. Herausforderung an Forstgenetik und Waldbau. Forstliche Bundesversuchsanstalt Wien, Berichte 81. ISSN 1013-0713, pp 67–75

  • Nabuurs GJ, Paivinen R, Pussinen A, Schelhaas MJ (2003) Development of European Forests until 2050. European Forest Institute Research Report 15. Brill, Leiden, Boston, pp 242

  • Nabuurs GJ, Pussinen A, van Brusselen J, Schelhaas MJ (2007) Future harvesting pressure on European forests. Eur J For Res 126:391–400. doi:10.1007/s10342-006-0158-y

    Google Scholar 

  • Nabuurs GJ, Schelhaas MJ, Pussinen A (2000) Validation of the European Forest Information Scenario Model (EFISCEN) and a Projection of Finish forests. Silva Fenn 34:167–179

    Google Scholar 

  • Netherer S, Nopp-Mayr U (2005) Predisposition assessment systems (PAS) as supportive tools in forest management—rating of site and stand-related hazards of bark beetle infestation in the High Tatra Mountains as an example for system application and verification. For Ecol Manage 207:99–107

    Article  Google Scholar 

  • Netherer S, Pennerstorfer J (2001) Parameters relevant for modelling the potential development of Ips typographus (Coleoptera: Scolytidae). Integr Pest Manage Rev 6:177–184. doi:10.1023/A:1025719301446

    Article  Google Scholar 

  • Okland B, Bjornstad ON (2003) Synchrony and geographical variation of the spruce bark beetle (Ips typographus) during a non-epidemic period. Popul Ecol 45:213–219. doi:10.1007/s10144-003-0157-5

    Article  Google Scholar 

  • Parmesan C, Ryrholm N, Stefanescu C, Hillk JK, Thomas CD, Descimon H et al (1999) Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399:579–583. doi:10.1038/21181

    Article  CAS  Google Scholar 

  • Pussinen A, Schelhaas MJ, Verkaik E, Heikkinen E, Paivinen R, Nabuurs GJ (2001) Manual for the European Forest Information Scenario Model (EFISCEN); version 2.0. EFI Internal report 5. European Forest Institute. Joensuu, Finland, pp 49

  • Pussinen A, Meyer J, Zudin S, Lindner M (2005) European mitigation potential. In: Kellomäki S, Leinonen S (eds) Management of European forests under changing climatic conditions. Research Note 163, University of Joensuu. ISBN 952-458-652-5, pp 383–400

  • R Development Core Team (2006) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. Available at: http://www.R-project.org. 17 January 2007

  • Rouault G, Candau JN, Lieutier F, Nageleisen LM, Martin JC, Warzée N (2006) Effects of drought and heat on forest insect populations in relation to the 2003 drought in Western Europe. Ann Sci 63:613–624. doi:10.1051/forest:2006044

    Article  Google Scholar 

  • Sallnäs O (1990) A matrix growth model of the Swedish forest. Stud For Suec 183:23

    Google Scholar 

  • Schadauer K (1999) Oberhöhenbonität und Standort der Fichte nach Daten der Österreichischen Forstinventur. Mitteilungen der Forstliche Bundesversuchsanstalt Wien 171. ISBN:3-901347-18-6, pp 135

  • Schelhaas MJ, Nabuurs GJ, Sonntag M, Pussinen A (2002) Adding natural disturbances to a large-scale forest scenario model and a case study for Switzerland. For Ecol Manage 167:13–26

    Article  Google Scholar 

  • Schelhaas MJ, Nabuurs GJ, Schuck A (2003) Natural disturbances in the European forests in the 19th and 20th centuries. Glob Change Biol 9:1620–1633. doi:10.1046/j.1365-2486.2003.00684.x

    Article  Google Scholar 

  • Schelhaas MJ, van Brusselen J, Pussinen A, Pesonen E, Schuck A, Nabuurs GJ, et al (2006) Outlook for the development of European forest resources. Geneva timber and forest discussion papers 41, United Nations Economic Commission for Europe, Food and Agriculture Organization of the United Nations. ISSN 1020-7228, pp 118

  • Schelhaas MJ, Eggers J, Lindner M, Nabuurs GJ, Pussinen A, Päivinen R, et al (2007) Model documentation for the European Forest Information Scenario model (EFISCEN 3.1). Wageningen, Alterra, Alterra report 1559, EFI Technical Report 26, Joensuu, Finland, p 118

  • Schroeder LM (2001) Tree mortality by the bark beetle Ips typographus (L.) in storm-disturbed stands. Integr Pest Manage Rev 6:169–175. doi:10.1023/A:1025771318285

    Article  Google Scholar 

  • Schröter D, Acosta-Michlik L, Arnell AW, Araújo MB, Badeck F, Bakker M, et al (2004) ATEAM final report 2004. Advanced Terrestrial Ecosystem Analysis and Modelling. Potsdam Institute for Climate Impact Research (PIK), pp 139

  • Seidl R, Lexer MJ, Jäger D, Hönninger K (2005) Evaluating the accuracy and generality of a hybrid forest patch model. Tree Physiol 25:939–951

    Google Scholar 

  • Seidl R, Rammer W, Baier P, Schopf A, Lexer MJ (2007a) Modelling tree mortality by bark beetle infestation in Norway spruce forests. Ecol Modell 206:383–399. doi:10.1016/j.ecolmodel.2007.04.002

    Article  Google Scholar 

  • Seidl R, Rammer W, Jäger D, Currie WS, Lexer MJ (2007b) Assessing trade-offs between carbon sequestration and timber production within a framework of multi-purpose forestry in Austria. For Ecol Manage 248:64–79

    Article  Google Scholar 

  • Seidl R, Rammer W, Jäger D, Lexer MJ (2008) Impact of bark beetle (Ips typographus L.) disturbance on timber production and carbon sequestration in different management strategies under climate change. For Ecol Manage 256:209–220

    Article  Google Scholar 

  • Shugart HH (1984) A theory of forest dynamics: the ecological implications of forest succession models. Springer, New York, p 278

    Google Scholar 

  • Spiecker H (2003) Silvicultural management in maintaining biodiversity and resistance of forests in Europe—temperate zone. J Environ Manage 67:55–65. doi:10.1016/S0301-4797(02)00188-3

    Article  Google Scholar 

  • Spiecker H, Hansen J, Kilmo E, Skovsgaard JP, Sterba H, von Teuffel K (2004) Norway spruce conversion—options and consequences. EFI Research Report 18. Brill, Leiden, p 320

  • Sturtevant BR, Gustafson EJ, Li W, He HS (2004) Modelling biological disturbances in LANDIS: a module description and demonstration using spruce budworm. Ecol Modell 180:153–174. doi:10.1016/j.ecolmodel.2004.01.021

    Article  Google Scholar 

  • Thürig E, Schelhaas MJ (2006) Evaluation of a large-scale forest scenario model in heterogeneous forests: a case study for Switzerland. Can J Res 36:671–683. doi:10.1139/x05-283

    Article  Google Scholar 

  • Tomiczek C, Krehan H, Cech T, Donaubauer E (1997) Forstschadenssituation in Österreich. AFZ Der Wald 07/97:387–389

    Google Scholar 

  • Tomiczek C, Cech T, Krehan H, Perny B, Steyrer G (2005) Forstschutzsituation 2004 in Österreich. AFZ Der Wald 07(05):377–379

    Google Scholar 

  • Urban DL, Acevedo MF, Garman SL (1999) Scaling fine-scale processes to large-scale patterns using models derived from models: meta-models. In: Mladenoff DJ, Baker WL (eds) Spatial modelling of forest landscape change: approaches and applications. Cambridge University Press, Cambridge, pp 70–98

    Google Scholar 

  • Weiss P, Schieler K, Schadauer K, Radunsky K, Englisch M (2000) Die Kohlenstoffbilanz des Österreichischen Waldes und Betrachtungen zum Kyoto-Protokoll. Monographien M-106, Umweltbundesamt Wien, p 94. ISBN 3-85457-454-1

  • Wermelinger B (2004) Ecology and management of the spruce bark beetle Ips typographus—a review of recent research. For Ecol Manage 202:67–82

    Article  Google Scholar 

  • Wermelinger B, Seifert M (1999) Temperature-dependent reproduction of the spruce bark beetle Ips typographus, and analysis of the potential population growth. Ecol Entomol 24:103–110. doi:10.1046/j.1365-2311.1999.00175.x

    Article  Google Scholar 

  • Williams DW, Liebhold AM (2002) Climate change and the outbreak ranges of two North American bark beetles. Agric For Entomol 4:87–99. doi:10.1046/j.1461-9563.2002.00124.x

    Article  Google Scholar 

  • Woltjer M, Rammer W, Brauner M, Seidl R, Mohren GMJ, Lexer MJ (2008) Coupling a 3D patch model and a rockfall module to assess rockfall protection in mountain forests. J Environ Manage 87:373–388. doi:10.1016/j.jenvman.2007.01.031

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly funded by a scholarship grant of the European Forest Institute to R. Seidl. Additionally funds came from the EU project EFORWOOD (Contract no FP6-518128-2). We thank R. Petritsch for help with the mathematical annotation and two anonymous reviewers for helping to improve an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupert Seidl.

Appendices

Appendix 1: A meta-model of infestation probability

Both the statistical models of infestation probability (Eq. 4, Table 4) and of soil moisture index (Eq  5, Appendix 2) represent meta-models (cf. Urban et al. 1999) designed to capture the main model behaviour of the stand level model PICUS. It has to be noted that the reported statistics describe the fit of the meta-models to the PICUS simulations rather than to independent observed data. Whereas the stand level model PICUS uses detailed climate information on quasi-daily to monthly time steps aggregated climate parameters (annual integration) were used as explanatory variables in the meta-modelling to assure compatibility with widely available data sets of large spatial coverage. Thus the interannual climate variation is fixed in the meta-model.

Table 4 Parameters for the multivariate logit model of bark beetle infestation probability (Eq. 4)

The statistical pBB model (Eq. 4) showed sensible model behaviour in line with expectations and PICUS model logic. Simulated pBB increased with increasing temperature and decreasing precipitation. Furthermore, older stands showed higher probability of bark beetle damage than young stands and the susceptibility to bark beetle increased with increasing host tree share. Decreasing stand densities resulted in slightly increasing probabilities of bark beetle damage in the model, related to increasing light levels in the forest and subsequently increasing bark temperatures. The R² for the logit-model was calculated as:

$$ R^{2} = \frac{{1 - \left( {\hat{L}_{0} /L} \right)^{2/n} }}{{1 - \hat{L}_{0}^{2/n} }} $$

where n is the number of binary observations and \( \hat{L}_{0} \) is the maximised likelihood under the null (R² = 0.923; see Faraway 2006). Average model bias (E) was calculated as an average of errors for all predictions by

$$ E = \frac{1}{n}\sum {(y_{i} - \hat{y}_{i} )} $$

where y i is the observed and \( \hat{y}_{i} \) is the predicted value. The resulting average model bias for the pBB model was small (E = −1.792 × 10−15) and not significantly different from zero (α = 0.05). Also the mean absolute error of pBB, |E|,

$$ \left| E \right| = \frac{1}{n}\sum {\left| {y_{i} - \hat{y}_{i} } \right|} $$

was found to be satisfactorily low with 0.0389. Analysing model residuals over the range of estimation showed no evidence for non-constant residual variation.

Appendix 2: A meta-model of soil moisture index

Generalised linear model behaviour was generally in line with the definition of SMI (see Eq. 3), showing a directly proportional relationship between SMI and temperature and an indirectly proportional relationship between SMI and precipitation. However, SMI response to precipitation was found to be widely insensitive to precipitation levels of more than 1,100 mm per year in the PICUS simulations with a strong increase in SMI at lower precipitation levels. Thus, a transformation of the corresponding predictor variable was applied (Eq. 5, Table 5). Nevertheless, the residual distribution showed a slight trend towards an underestimation of low and an overestimation of high SMI values but was, however, not significantly different to the normal distribution around zero. The GLM explained a high proportion of variance in SMI estimates (R 2 = 0.945) and average model bias E (2.885 × 10−19) was not significantly different from zero at α = 0.05. Also the mean absolute error of the GLM was small (|E| = 0.0234).

Table 5 Parameters for the multivariate regression model of soil moisture index (Eq. 5)

Appendix 3: Aggregation of annual damage events to periodic area transitions

To demonstrate the approach of scaling annual damage probabilities to EFISCEN periods we use data of the Burgenland region (bgl) for the period 2001–2005 (baseline climate scenario), 100% host tree share, age class five (80–100 years) and volume class seven (280–394 m³ ha−1), see Table 6.

Table 6 Example meta-model output for annual damage probability (pBB) and damage intensity (iBB) for the years y of a 5-year simulation period in EFISCEN

We apply probability theory to account for multiple damages per area unit in aggregating annual meta-model estimates. The joint probability of all independent annual events contained in a subset Y n , i.e., the area share in the matrix cell damaged |Y n | times in the years y ∈ Y n , is represented by \( \prod\limits_{{y \in Y_{n} }} {p{\text{BB}}_{y} } \) (Eq. 6, first term). Since we are interested in the area damaged only in the years y ∈ Y n (and not also in other years of the period), this estimate needs to be corrected for all Y ⊆ I of higher cardinality than |Y n | containing the elements of Y n . (Eq. 6, second term, \( \prod\limits_{{z \in I\backslash Y_{n} }} {q{\text{BB}}_{z} } \)). Overall = 31 subsets of Y n exist for Y ⊆ I in a 5-year period \( \left( {n = \sum\limits_{i = 1}^{5} {\left( {\begin{array}{*{20}c} 5 \\ i \\ \end{array} } \right)} } \right). \) For Y 1  = = {1, 2, 3, 4, 5}, the subset with the maximum cardinality, \( s{\text{BB}}_{{Y_{1} }} \) represents the area in the EFISCEN matrix cell damaged by bark beetle in all 5 years of the period. In this case the second term in Eq. 6 is an empty set and \( s{\text{BB}}_{{Y_{1} }} \) is computed as the joint probability of the five damage probabilities, resulting in 4.36 × 10−3 in our example. This area share in the EFISCEN matrix cell is subject to stand replacing disturbance and moved to the bare forest land class. For subset Y 2  = {1, 2, 3, 4} the joint probability of 12.34 × 10−3 (Eq. 6, first term) contains also the joint probability for subset Y 1 (Y 2 ⊂ Y 1) and the corrected \( s{\text{BB}}_{{Y_{2} }} \) is \( s{\text{BB}}_{{Y_{2} }} = \prod\limits_{y = 1}^{4} {p{\text{BB}}_{y} - \prod\limits_{y = 1}^{5} {p{\text{BB}}_{y} = \prod\limits_{{y \in Y_{2} }} {p{\text{BB}}_{y} \cdot \prod\limits_{{z \in I\backslash Y_{2} }} {q{\text{BB}}_{z} } } } } \) (confer the general formulation in Eq. 6), i.e., a value of 7.98 × 10−3 in our example. Applying Eq. 7 the corresponding cumulative damage intensity \( i{\text{BB}}_{{Y_{2} }} \) is 0.128 and will be treated as non-stand replacing disturbance in the EFISCEN framework \( \left( {iBB_{{Y_{n} }} \le 0.5} \right). \) Following this sequence for all n subsets of I and applying Eq. 8 results in a volume damage percentage vBB of 5.60% (non-stand replacing) for the 5-year period in our example matrix cell. This percentage is subsequently converted to area transitions to a lower volume class in the EFISCEN matrix framework.

Appendix 4: Species change management regimes based on the current potential natural vegetation composition (PNV)

For the two species change strategies the potential natural species composition for every ecoregion was defined in three elevation belts according to Kilian et al. (1994). Additionally assumptions on the average species composition of the respective natural forest types were made (see Table 7). Aggregated with the respective share of the elevation belts on the ecoregion the target species composition (i.e., natural species composition under current conditions) was derived and implemented in the conversion rules (see Table 8). In both PNV strategies Norway spruce forests with a share of less than 30% (category Pa.s, Table 8) were only subject to conversion in areas where Norway spruce is not a dominant species of the potential natural tree species composition (Kilian et al. 1994). If two main forest types had been classified for one elevation belt and ecozone in Kilian et al. (1994) we assumed an equal share of both forest types.

Table 7 Distribution of the simulated forest area (i.e., current Norway spruce forest area) to elevation belts and the associated potential natural vegetationa for the ecoregions as applied for the calculation of conversion area in the PNV scenarios
Table 8 Species change in the PNV conversion strategies

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seidl, R., Schelhaas, MJ., Lindner, M. et al. Modelling bark beetle disturbances in a large scale forest scenario model to assess climate change impacts and evaluate adaptive management strategies. Reg Environ Change 9, 101–119 (2009). https://doi.org/10.1007/s10113-008-0068-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-008-0068-2

Keywords

Navigation