Skip to main content

Advertisement

Log in

Mountain forest growth response to climate change in the Northern Limestone Alps

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Growth response to climate differs between species and elevation. Fir is the most drought-tolerant species. The mountain forests are robust to the climatic changes until now.

Abstract

Alpine mountain forests provide a wide range of ecological and socio-economic services. Climate change is predicted to challenge these forests, but there are still considerable uncertainties how these ecosystems will be affected. Here, we present a multispecies tree-ring network of 500 trees from the Berchtesgaden Alps (Northern Limestone Alps, Southeast Germany) in order to assess the performance of native mountain forest species under climate change conditions. The dataset comprises 180 spruce, 90 fir, 110 larch and 120 beech trees from different elevations and slope exposures. We analyse the species with respect to: (1) the general growth/climate response; (2) the growth reaction (GR) during the hot summer in 2003 and (3) the growth change (GC) resulting from increasing temperatures since the 1990s. Spruce is identified as the most drought-sensitive species at the lower elevations. Fir shows a high drought tolerance and is well suited with regard to climate change. Larch shows no clear pattern, and beech remains unaffected at lower elevations. The unprecedented temperature increase of the last decades did not induce any distinct GC. The mountain forests of the Berchtesgaden Alps appear to be robust within the climatic changes until now.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Affolter P, Büntgen U, Esper J, Rigling A, Weber P, Luterbacher J, Frank DC (2010) Inner Alpine conifer response to 20th century drought swings. Eur J For Res 129(3):289–298. doi:10.1007/s10342-009-0327-x

    Article  Google Scholar 

  • Auer I, Böhm R, Jurkovic A, Lipa W, Orlik A, Potzmann R, Schöner W, Ungersböck M, Matulla C, Briffa KR, Jones PD, Efthymiadis D, Brunetti M, Nanni T, Maugeri M, Mercalli L, Mestre O, Moisselin J, Begert M, Müller-Westermeier G, Kveton V, Bochnicek O, Stastny P, Lapin M, Szalai S, Szentimrey T, Cegnar T, Dolinar M, Gajic-Capka M, Zaninovic K, Majstorovic Z, Nieplova E (2007) HISTALP—historical instrumental climatological surface time series of the Greater Alpine Region. Int J Climatol 27:17–46. doi:10.1002/joc.1377

    Article  Google Scholar 

  • Babst F, Poulter B, Trouet V, Tan K, Neuwirth B, Wilson RJS, Carrer M, Grabner M, Tegel W, Levanič T, Panayotov M, Urbinati C, Bouriaud O, Ciais P, Frank DC, Sykes MT (2013) Site- and species-specific responses of forest growth to climate across the European continent. Glob Ecol Biogeogr. doi:10.1111/geb.12023

    Google Scholar 

  • Battipaglia G, Saurer M, Cherubini P, Siegwolf RT, Cotrufo MF (2009) Tree rings indicate different drought resistance of a native (Abies alba Mill.) and a nonnative (Picea abies (L.) Karst.) species co-occurring at a dry site in Southern Italy. Ecol Manage 257(3):820–828. doi:10.1016/j.foreco.2008.10.015

    Article  Google Scholar 

  • Björnsen A, Huber UM, Reasoner MA, Messerli B, Bugmann HK (2005) Future research directions. In: Huber UM, Bugmann HK, Reasoner MA (eds) Global change and mountain regions. An overview of current knowledge. Springer, Dordrecht, pp 637–650

    Chapter  Google Scholar 

  • Bolte A, Ammer C, Löf M, Madsen P, Nabuurs G, Schall P, Spathelf P, Rock J (2009) Adaptive forest management in central Europe: climate change impacts, strategies and integrative concept. Scand J For Res 24(6):473–482. doi:10.1080/02827580903418224

    Article  Google Scholar 

  • Bugmann HK, Zierl B, Schumacher S (2005) Projecting the impacts of climate change on mountain forests and landsapes. In: Huber UM, Bugmann HK, Reasoner MA (eds) Global change and mountain regions. An overview of current knowledge. Springer, Dordrecht, pp 477–487

    Chapter  Google Scholar 

  • Bunn AG, Korpela M, Biondi F, Merian P, Qeadan F, Zang C (2012) dplR: Dendrochronology Program Library in R. R package version 1.5.6. http://CRAN.R-project.org/package=dplR

  • Cornelius C, Estrella N, Franz H, Menzel A (2013) Linking altitudinal gradients and temperature responses of plant phenology in the Bavarian Alps. Plant Biol 15:57–69. doi:10.1111/j.1438-8677.2012.00577.x

    Article  PubMed  Google Scholar 

  • Desplanque C, Rolland C, Schweingruber FH (1999) Influence of species and abiotic factors on extreme tree ring modulation: Picea abies and Abies alba in Tarentaise and Maurienne (French Alps). Trees Struct Funct 13:218–227

    Article  Google Scholar 

  • R Development Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Dittmar C, Elling W (1999) Jahrringbreite von Fichte und Buche in Abhängigkeit von Witterung und Höhenlage. Forstwissenschaftliches Centralblatt 118:251–270

    Article  Google Scholar 

  • Dittmar C, Zech W, Elling W (2003) Growth variations of Common beech (Fagus sylvatica L.) under different climatic and environmental conditions in Europe—a dendroecological study. Ecol Manage 173(1–3):63–78. doi:10.1016/S0378-1127(01)00816-7

    Article  Google Scholar 

  • Dittmar C, Fricke W, Elling W (2006) Impact of late frost events on radial growth of common beech (Fagus sylvatica L.) in Southern Germany. Eur J For Res 125(3):249–259. doi:10.1007/s10342-005-0098-y

    Article  Google Scholar 

  • Dobbertin M (2005) Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review. Eur J For Res 124(4):319–333. doi:10.1007/s10342-005-0085-3

    Article  Google Scholar 

  • EEA (2012) Climate change, impacts and vulnerability in Europe 2012. An indicator-based report, Copenhagen

  • Elkin C, Gutiérrez AG, Leuzinger S, Manusch C, Temperli C, Rasche L, Bugmann H (2013) A 2 °C warmer world is not safe for ecosystem services in the European Alps. Glob Change Biol 19(6):1827–1840. doi:10.1111/gcb.12156

    Article  Google Scholar 

  • Elling W, Dittmar C, Pfaffelmoser K, Rötzer T (2009) Dendroecological assessment of the complex causes of decline and recovery of the growth of silver fir (Abies alba Mill.) in Southern Germany. Ecol Manage 257(4):1175–1187. doi:10.1016/j.foreco.2008.10.014

    Article  Google Scholar 

  • Engler R, Randin CF, Thuiller W, Dullinger S, Zimmermann NE, Araújo MB, Pearman PB, Le Lay G, Piedallu C, Albert CH, Choler P, Coldea G, de Lamo X, Dirnböck T, Gégout J, Gómez-García D, Grytnes J, Heegaard E, Høistad F, Nogués-Bravo D, Normand S, PuŞcaŞ M, Sebastià M, Stanisci A, Theurillat J, Trivedi MR, Vittoz P, Guisan A (2011) 21st century climate change threatens mountain flora unequally across Europe. Glob Change Biol 17(7):2330–2341. doi:10.1111/j.1365-2486.2010.02393.x

    Article  Google Scholar 

  • FOREST EUROPE UaF (2011) State of Europe’s forests 2011. Status and trends in sustainable forest management in Europe

  • Frank D, Esper J (2005) Characterization and climate response patterns of a high-elevation, multi-species tree-ring network in the European Alps. Dendrochronologia 22(2):107–121. doi:10.1016/j.dendro.2005.02.004

    Article  Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic Press, London

    Google Scholar 

  • Fuhrer J, Beniston M, Fischlin A, Frei C, Goyette S, Jasper K, Pfister C (2006) Climate risks and their impact on agriculture and forests in Switzerland. Clim Change 79(1–2):79–102. doi:10.1007/s10584-006-9106-6

    Article  CAS  Google Scholar 

  • Hasenauer H, Nemani RR, Schadauer K, Running SW (1999) Forest growth response to changing climate between 1961 and 1990 in Austria. Ecol Manage 122:209–219

    Article  Google Scholar 

  • Hofer T (2005) The international year of mountains: challenge and opportunity for mountain research. In: Huber UM, Bugmann HK, Reasoner MA (eds) Global change and mountain regions. An overview of current knowledge. Springer, Dordrecht, pp 1–8

    Chapter  Google Scholar 

  • Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin 43:69–78

    Google Scholar 

  • IPCC (2013) Climate change 2013: The physical science basis. Summary for policymakers

  • Jolly WM, Dobbertin M, Zimmermann NE, Reichstein M (2005) Divergent vegetation growth responses to the 2003 heat wave in the Swiss Alps. Geophys Res Lett 32(18): L18409. doi:10.1029/2005GL023252

  • Kölling C (2007) Klimahüllen für 27 Waldbaumarten. Allg Forst Z 62(23):1242–1245

    Google Scholar 

  • Konnert V, Siegrist J (2000) Waldentwicklung im Nationalpark Berchtesgaden von 1983 bis 1997. Forschungsbericht Nr. 43

  • Körner C (2012) Alpine treelines. Functional ecology of the global high elevation tree limits. Springer, Basel

  • Leal S, Melvin TM, Grabner M, Wimmer R, Briffa KR (2007) Tree-ring growth variability in the Austrian Alps: the influence of site, altitude, tree species and climate. SBOR 36(4):426–440. doi:10.1080/03009480701267063

    Article  Google Scholar 

  • Lebourgeois F, Rathgeber CB, Ulrich E (2010) Sensitivity of French temperate coniferous forests to climate variability and extreme events (Abies alba, Picea abies and Pinus sylvestris). J Veg Sci 21(2):364–376. doi:10.1111/j.1654-1103.2009.01148.x

    Article  Google Scholar 

  • Lévesque M, Saurer M, Siegwolf R, Eilmann B, Brang P, Bugmann H, Rigling A (2013) Drought response of five conifer species under contrasting water availability suggests high vulnerability of Norway spruce and European larch. Glob Change Biol 19(10):3184–3199. doi:10.1111/gcb.12268

    Article  Google Scholar 

  • Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolström M, Lexer MJ, Marchetti M (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Ecol Manage 259(4):698–709. doi:10.1016/j.foreco.2009.09.023

    Article  Google Scholar 

  • Lindroth A, Lagergren F, Grelle A, Klemedtsson L, Langvall O, Weslien P, Tuulik J (2009) Storms can cause Europe-wide reduction in forest carbon sink. Glob Change Biol 15(2):346–355. doi:10.1111/j.1365-2486.2008.01719.x

    Article  Google Scholar 

  • Luckman BH (2007) Dendroclimatology. In: Elias SA (ed) Encyclopedia of quaternary science. Elsevier, Amsterdam, pp 465–476

    Chapter  Google Scholar 

  • Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303(5663):1499–1503. doi:10.1126/science.1093877

    Google Scholar 

  • Mäkinen H, Nöjd P, Kahle H, Neumann U, Tveite B, Mielikäinen K, Röhle H, Spiecker H (2002) Radial growth variation of Norway spruce (Picea abies (L.) Karst.) across latitudinal and altitudinal gradients in central and northern Europe. Ecol Manage 171:243–259

    Article  Google Scholar 

  • Maxime C, Hendrik D (2011) Effects of climate on diameter growth of co-occurring Fagus sylvatica and Abies alba along an altitudinal gradient. Trees Struct Funct 25(2):265–276. doi:10.1007/s00468-010-0503-0

    Article  Google Scholar 

  • Mc Morran R, Price MF (2011) Why focus on the world’s mountain forests? In: FAO/MPS and SDC (ed) Mountain forests in a changing world. Realizing values, addressing challenges, Rome, pp 8–10

  • Mosteller F, Tukey JW (eds) (1977) Data analysis and regression. A second course in statistics. Addison-wesley series in behavioral science. Quantitative methods. Addison-Wesley Pub. Co., Reading, Mass

  • Neuwirth B, Esper J, Schweingruber FH, Winiger M (2004) Site ecological differences to the climatic forcing of spruce pointer years from the Lötschental, Switzerland. Dendrochronologia 21(2):69–78. doi:10.1078/1125-7865-00040

    Article  Google Scholar 

  • Paulsen J, Weber U, Körner C (2000) Tree growth near treeline: abrupt or gradual reduction with altitude? Arct Antarct Alp Res 32(1):14–20

    Article  Google Scholar 

  • Rinn F (2003) TSAP-Win. Time series analysis and presentation for dendrochronology and related applications. RINNTECH, Heidelberg

    Google Scholar 

  • Rolland C, Petitcolas V, Michalet R (1998) Changes in radial tree growth for Picea abies, Larix decidua, Pinus cembra and Pinus uncinata near the alpine timberline since 1750. Trees Struct Funct 13:40–53

    Google Scholar 

  • Salzer MW, Hughes MK, Bunn AG, Kipfmueller KF (2009) Recent unprecedented tree-ring growth in bristlecone pine at the highest elevations and possible causes. PNAS 106(48):20348–20353. doi:10.1073/pnas.0903029106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Savva Y, Oleksyn J, Reich PB, Tjoelker MG, Vaganov EA, Modrzynski J (2006) Interannual growth response of Norway spruce to climate along an altitudinal gradient in the Tatra Mountains, Poland. Trees Struct Funct 20(6):735–746. doi:10.1007/s00468-006-0088-9

    Article  Google Scholar 

  • Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336

    Article  PubMed  Google Scholar 

  • Schumacher S, Bugmann HK (2006) The relative importance of climatic effects, wildfires and management for future forest landscape dynamics in the Swiss Alps. Glob Change Biol 12(8):1435–1450. doi:10.1111/j.1365-2486.2006.01188.x

    Article  Google Scholar 

  • Schuster R, Oberhuber W (2013) Drought sensitivity of three co-occurring conifers within a dry inner Alpine environment. Trees Struct Funct 27(1):61–69. doi:10.1007/s00468-012-0768-6

    Article  Google Scholar 

  • Seidl R, Rammer W, Jäger D, Lexer MJ (2008) Impact of bark beetle (Ips typographus L.) disturbance on timber production and carbon sequestration in different management strategies under climate change. Ecol Manage 256(3):209–220. doi:10.1016/j.foreco.2008.04.002

    Article  Google Scholar 

  • Speer JH (ed) (2010) Fundamentals of tree-ring research. University of Arizona Press, Tucson

    Google Scholar 

  • van der Maaten-Theunissen M, Kahle H, van der Maaten E (2013) Drought sensitivity of Norway spruce is higher than that of silver fir along an altitudinal gradient in southwestern Germany. Ann For Sci 70(2):185–193. doi:10.1007/s13595-012-0241-0

    Article  Google Scholar 

  • Weber P, Bugmann HK, Rigling A (2007) Radial growth responses to drought of Pinus sylvestris and Quercus pubescens in an inner-Alpine dry valley. J Veg Sci 18(6):777. doi:10.1658/1100-9233(2007)18[777:RGRTDO]2.0.CO;2

  • Wigley T, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213

    Article  Google Scholar 

  • Wilson RJS, Hopfmüller M (2001) Dendrochronological investigations of Norway spruce along an elevational transect in the Bavarian Forest, Germany. Dendrochronologia 19(1):67–79

    Google Scholar 

  • Zang C (2012) Wachstumsreaktion von Baumarten in temperierten Wäldern auf Sommertrockenheit: Erkenntnisse aus einem Jahrringnetzwerk. Mitt Deutsch Dendrol Ges 97:29–46

    Google Scholar 

  • Zang C, Biondi F (2013) Dendroclimatic calibration in R: the bootRes package for response and correlation function analysis. Dendrochronologia 31(1):68–74. doi:10.1016/j.dendro.2012.08.001

    Article  Google Scholar 

  • Zang C, Rothe A, Weis W, Pretzsch H (2011) Zur Baumarteneignung bei Klimawandel: Ableitung der Trockenstress-Anfälligkeit wichtiger Waldbaumarten aus Jahrringbreiten. Allg Forst- u J-Ztg 182(5/6):98–112

    Google Scholar 

Download references

Acknowledgments

We thank the staff from the Berchtesgaden National Park and the adjacent forest districts, in particular M. Vogel, V. Konnert, R. Baier, M. Hofbeck, H. Neubauer, W. Vogel, M. Gröll., D. Müller, P. Renoth and C. Dinger for supporting site selection and sampling. L. Ma, J. Riepl and F. Forster helped with field and laboratory work, and J. Esper with refining the climate response analysis. We are grateful to the Berchtesgaden National Park for funding this study. C.Z. acknowledges funding by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. [282250].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Hartl-Meier.

Additional information

Communicated by G. Wieser.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 490 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartl-Meier, C., Dittmar, C., Zang, C. et al. Mountain forest growth response to climate change in the Northern Limestone Alps. Trees 28, 819–829 (2014). https://doi.org/10.1007/s00468-014-0994-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-014-0994-1

Keywords

Navigation