Skip to main content
Log in

Evaluation of Agricultural Productivity Loss of Vineyards Through Water Erosion in Türkiye

  • Original Article
  • Published:
Applied Fruit Science Aims and scope Submit manuscript

Abstract

Soil erosion in vineyards in semi-arid lands is one of the major problems affecting crop productivity, and this issue is becoming crucial in Turkish vineyards with vulnerable structures in the Mediterranean region. Although there are several studies on viticulture, there are no studies evaluating the condition of the productivity of the vineyards in terms of soil erosion. In this study, the main goal is to estimate the land productivity loss (LPL) caused by water erosion and the consequent crop productivity loss (CLP) for agricultural fields and vineyards, which is significant with hazardous consequences. For this purpose, soil loss data derived by the revised universal soil loss equation (RUSLE) from the Water Erosion Atlas of Türkiye (2018) and land use data from CORINE (2018) were used. According to the study results, the country had a loss of an estimated 0.92% of land productivity due to water erosion, which is approximately 1.84 times higher than that in European Union countries. The LPL in vineyards was estimated at 1.07%, and those results highlight the significant estimation of the crop productivity loss in vineyards of around 9.4 million dollars annually.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Material

The datasets used during the current study are available from the first author on reasonable request.

References

  • Aksoy T, Dabanli A, Cetin M, Senyel Kurkcuoglu MA, Cengiz AE, Cabuk SN et al (2022) Evaluation of comparing urban area land use change with Urban Atlas and CORINE data. Environ Sci Pollut Res 29(19):28995–29015

    Google Scholar 

  • Allison FE (1973) Soil organic matter and its role in crop production. Elsevier, New York

    Google Scholar 

  • Aneseyee AB, Elias E, Soromessa T, Feyisa GL (2020) Land use/land cover change effect on soil erosion and sediment delivery in the Winike watershed, Omo Gibe Basin, Ethiopia. Sci Total Environ 728:138776

    CAS  PubMed  Google Scholar 

  • Arnaez J, Lasanta T, Ruiz-Flaño P, Ortigosa L (2007) Factors affecting runoff and erosion under simulated rainfall in Mediterranean vineyards. Soil Tillage Res 93(2):324–334

    Google Scholar 

  • Arriaga F, Lowery B (2003) Soil physical properties and crop productivity of an eroded soil amended with cattle manure. Soil Sci. https://doi.org/10.1097/01.ss.0000106403.84926.7e

    Article  Google Scholar 

  • Aune-Lundberg L, Strand GH (2021) The content and accuracy of the CORINE Land Cover dataset for Norway. Int J Appl Earth Obs Geoinf 96:102266

    Google Scholar 

  • Aytop H, Şenol S (2022) The effect of different land use planning scenarios on the amount of total soil losses in the Mikail stream micro-basin. Environ Monit Assess. https://doi.org/10.1007/s10661-022-09937-2

    Article  PubMed  Google Scholar 

  • Bakker MM, Govers G, Jones RA, Rounsevell MDA (2007) The effect of soil erosion on Europe’s crop yields. Ecosystems 10(7):1209–1219

    Google Scholar 

  • Biddoccu M, Ferraris S, Opsi F, Cavallo E (2016) Long-term monitoring of soil management effects on runoff and soil erosion in sloping vineyards in Alto Monferrato (North-West Italy). Soil Tillage Res 155:176–189

    Google Scholar 

  • Biddoccu M, Guzman G, Capello G, Thielke T, Strauss P, Winter S et al (2020) Evaluation of soil erosion risk and identification of soil cover and management factor (C) for RUSLE in European vineyards with different soil management. Int Soil Water Conserv Res 8(4):337–353

    Google Scholar 

  • Bielecka E, Jenerowicz A (2019) Intellectual structure of CORINE Land Cover research applications in web of science: a Europe-wide review. Remote Sens 11(17):2017

    Google Scholar 

  • Bizoza AR, de Graaff J (2012) Financial cost-benefit analysis of bench terraces in Rwanda. Land Degrad Dev 23(2):103–115

    Google Scholar 

  • Boardman J (2021) How much is soil erosion costing us? J Geogr 106(1):32–38

    Google Scholar 

  • Boardman J, Favis-Mortlock D, Foster I (2015) A 13-year record of erosion on badland sites in the Karoo, South Africa. Earth Surf Process Landforms 40(14):1964–1981

    Google Scholar 

  • Bojo J (1996) The costs of land degradation in Sub-Saharan Africa. Ecol Econ 16:161–173

    Google Scholar 

  • Borrelli P, Robinson DA, Fleischer LR, Lugato E, Ballabio C, Alewell C et al (2017) An assessment of the global impact of 21st century land use change on soil erosion. Nat Commun 8(1):2013

    PubMed  PubMed Central  Google Scholar 

  • Çakır E, Yalçın H, Fadime A (2009) Conservation tillage practices in organic vineyard. Tarım Makinaları Bilimi Dergisi 5(3):359–363

    Google Scholar 

  • Calleja-Cervantes ME, Menéndez S, Fernández-González AJ, Irigoyen I, Cibriáin-Sabalza JF, Toro N et al (2015) Changes in soil nutrient content and bacterial community after 12 years of organic amendment application to a vineyard. Eur J Soil Sci 66:802–812. https://doi.org/10.1111/ejss.12261

    Article  CAS  Google Scholar 

  • Candar S, Uysal T, Ayaz A, Akdemir U, Korkutal İ, Bahar E (2021) Viticulture tradition in Turkey. Vitic Stud 1(1):39–54

    Google Scholar 

  • Casalí J, Giménez R, De Santisteban L, Álvarez-Mozos J, Mena J, de Lersundi JDV (2009) Determination of long-term erosion rates in vineyards of Navarre (Spain) using botanical benchmarks. CATENA 78(1):12–19

    Google Scholar 

  • Cerdà A, Doerr SH (2007) Soil wettability, runoff and erodibility of major dry-Mediterranean land use types on calcareous soils. Hydrol Process 21(17):2325–2336

    Google Scholar 

  • Cerdan O, Govers G, Le Bissonnais Y, Van Oost K, Poesen J, Saby N et al (2010) Rates and spatial variations of soil erosion in Europe: a study based on erosion plot data. Geomorphology 122(1–2):167–177

    Google Scholar 

  • Clark EH (1985) The off-site costs of soil erosion. J Soil Water Conserv 40(1):19–22

    Google Scholar 

  • Cole B, Smith G, Balzter H (2018) Acceleration and fragmentation of CORINE land cover changes in the United Kingdom from 2006–2012 detected by Copernicus IMAGE2012 satellite data. Int J Appl Earth Obs Geoinf 73:107–122

    Google Scholar 

  • Colombo S, Hanley N, Calatrava-Requena J (2005) Designing policy for reducing the off-farm effects of soil erosion using choice experiments. J Agric Econ 56(1):81–95

    Google Scholar 

  • CORINE (2018) https://land.copernicus.eu/pan-european/corine-land-cover/clc2018. Accessed 11 Apr 2023

  • Costantini EA, Barbetti R (2008) Environmental and visual impact analysis of viticulture and olive tree cultivation in the province of Siena (Italy). Eur J Agron 28(3):412–426

    Google Scholar 

  • Costantini EA, Castaldini M, Diago MP, Giffard B, Lagomarsino A, Schroers HJ et al (2018) Effects of soil erosion on agro-ecosystem services and soil functions: a multidisciplinary study in nineteen organically farmed European and Turkish vineyards. J Environ Manag 223:614–624

    CAS  Google Scholar 

  • Czyża S, Szuniewicz K, Cieślak I, Biłozor A, Bajerowski T (2023) An analysis of the spatial development of European cities based on their geometry and the CORINE Land Cover (CLC) database. Int J Environ Res Public Health 20(3):2049

    PubMed  PubMed Central  Google Scholar 

  • Dabija A, Kluczek M, Zagajewski B, Raczko E, Kycko M, Al-Sulttani AH et al (2021) Comparison of support vector machines and random forests for corine land cover mapping. Remote Sens 13(4):777

    Google Scholar 

  • Diamond J (2004) The enigmas of Easter Island by Flenley J, Bahn P. New York review of books. New York Review, New York

    Google Scholar 

  • Diaz-Pacheco J, Gutiérrez J (2014) Exploring the limitations of CORINE Land Cover for monitoring urban land-use dynamics in metropolitan areas. J Land Use Sci 9(3):243–259

    Google Scholar 

  • Dissanayake D, Morimoto T, Ranagalage M (2019) Accessing the soil erosion rate based on RUSLE model for sustainable land use management: a case study of the Kotmale watershed, Sri Lanka. Model Earth Syst Environ 5:291–306

    Google Scholar 

  • Dixon JA, Scura LF, Carpenter RA, Sherman PB (1994) Economic analysis of the environmental impacts, 2nd edn. Earthscan, London, p 224

    Google Scholar 

  • Erpul G, Sahin S, Ince K, Kucumen A, Akdag MA, Demirtas I, Cetin E (2018) Water erosion atlas of Turkey. General Directorate of Desertification and Combating Erosion Publication, Ankara

    Google Scholar 

  • European Commission (EC) (2006) Proposal for a directive of the European Parliament and of the Council establishing a framework for the protection of soil and amending directive 2004/35/EC/* COM/2006/0232 final—COD 2006/0086 13. http://ec.europa.eu/environment/soil/index_en.htm. Accessed 6 Feb 2023

  • FAO (2015) Status of the World’s soil resources. Main report, 2015

    Google Scholar 

  • FAO (2021) World Food and Agriculture—Statistical Yearbook 2021. FAO, Rome https://doi.org/10.4060/cb4477en

    Book  Google Scholar 

  • FAOSTAT (2019) https://atlasbig.com.tr/ulkelerin-uzum-uretimi. Accessed 16 June 2023

  • FAOSTAT (2023) Crops and livestock products. https://www.fao.org/faostat/en/#data/QCL. Accessed 1 Dec 2023

  • Foster GR, Young RA, Ronkens MJM, Onstad CA (1985) Processes of soil erosion by water. In: Follett FR, Stewart BA (eds) Soil erosion and crop productivity. American Society of Agronomy and Crop Science Society of America, Madison, pp 137–162

    Google Scholar 

  • García-Álvarez D, Olmedo MTC (2017) Changes in the methodology used in the production of the Spanish CORINE: Uncertainty analysis of the new maps. Int J Appl Earth Obs Geoinf 63:55–67

    Google Scholar 

  • García-Díaz A, Marqués MJ, Sastre B, Bienes R (2018) Labile and stable soil organic carbon and physical improvements using groundcovers in vineyards from Central Spain. Sci Total Environ 621:387–397

    PubMed  Google Scholar 

  • García-Ruiz JM, Lana-Renault N, Beguería S, Lasanta T, Regüés D, Nadal-Romero E et al (2010) From plot to regional scales: interactions of slope and catchment hydrological and geomorphic processes in the Spanish Pyrenees. Geomorphology 120(3–4):248–257

    Google Scholar 

  • Graves AR, Morris J, Deeks LK, Rickson RJ, Kibblewhite MG, Harris JA et al (2015) The total costs of soil degradation in England and Wales. Ecol Econ 119:399–413

    Google Scholar 

  • Guo Y, Peng C, Zhu Q, Wang M, Wang H, Peng S, He H (2019) Modelling the impacts of climate and land use changes on soil water erosion: model applications, limitations and future challenges. J Environ Manage 250:109403

    CAS  PubMed  Google Scholar 

  • Hein L (2007) Assessing the costs of land degradation: a case study for the Puentes catchment, Southeast Spain. Land Degrad Dev 18:631–642

    Google Scholar 

  • Jansen LJ, Di Gregorio A (2002) Parametric land cover and land-use classifications as tools for environmental change detection. Agric Ecosyst Environ 91(1):89–100

    Google Scholar 

  • Koirala P, Thakuri S, Joshi S, Chauhan R (2019) Estimation of soil erosion in Nepal using a RUSLE modeling and geospatial tool. Geosciences 9(4):147

    CAS  Google Scholar 

  • Kosztra B, Büttner G, Hazeu G, Arnold S (2017) Updated CLC illustrated nomenclature guidelines. European Environment Agency, Wien, pp 1–124

    Google Scholar 

  • Koulouri M, Giourga C (2007) Land abandonment and slope gradient as key factors of soil erosion in Mediterranean terraced lands. CATENA 69(3):274–281

    Google Scholar 

  • Kuhlman T, Reinhard S, Gaaff A (2010) Estimating the costs and benefits of soil conservation in Europe. Land Use Policy 27(1):22–32

    Google Scholar 

  • Lal R (1998) Soil erosion impact on agronomic productivity and environment quality. Crit Rev Plant Sci 17(4):319–464

    Google Scholar 

  • Lal R (2001) Soil degradation by erosion. Land Degrad Dev 12(6):519–539

    Google Scholar 

  • Lazzari M, Piccarreta M (2023) Soil erosion vs. vineyard productivity: the case of the Aglianico del Vulture DOC and DOCG areas (Southern Italy). Sustainability 15:15700. https://doi.org/10.3390/su152215700

    Article  Google Scholar 

  • Marques MJ, Bienes R, Pérez-Rodríguez R, Jiménez L (2008) Soil degradation in central Spain due to sheet water erosion by low-intensity rainfall events. Earth Surf Process Landforms 33:414–423

    Google Scholar 

  • Martínez-Casasnovas JA, Ramos MC (2006) The cost of soil erosion in vineyard fields in the Penedès-Anoia region (NE Spain). CATENA 68(2–3):194–199

    Google Scholar 

  • Martínez-Casasnovas JA, Ramos MC, Ribes-Dasi M (2005) On-site effects of concentrated flow erosion in vineyard fields: some economic implications. CATENA 60(2):129–146

    Google Scholar 

  • Martinson T (2019) https://grapes.extension.org/erosion-control-in-vineyards/. Accessed 29 Dec 2023

  • McCool DK (1982) Effects of slope length and steepness on soil erosion from rangelands. Proceedings of Workshop on Estimating Erosion and Sediment Yields on Rangelands, Tucson, AZAgricultural Reviews and ManualsW-26. USDA, Agricultural Research Service, pp 73–95

    Google Scholar 

  • Meshram SG, Tirivarombo S, Meshram C, Alvandi E (2023) Prioritization of soil erosion-prone sub-watersheds using fuzzy-based multi-criteria decision-making methods in Narmada basin watershed, India. Int J Environ Sci Technol 20(2):1741–1752

    CAS  Google Scholar 

  • Milazzo F, Fernández P, Peña A, Vanwalleghem T (2022) The resilience of soil erosion rates under historical land use change in agroecosystems of Southern Spain. Sci Total Environ 822:153672

    CAS  PubMed  Google Scholar 

  • Mingarro M, Lobo JM (2023) European national parks protect their surroundings but not everywhere: a study using land use/land cover dynamics derived from CORINE Land Cover data. Land Use Policy 124:106434

    Google Scholar 

  • Möller A, Ranke U (2006) Estimation of the on-farm-costs of soil erosion in Sleman, Indonesia. WIT Trans Ecol Environ 89:43–52

    Google Scholar 

  • Nearing MA, Xie Y, Liu B, Ye Y (2017) Natural and anthropogenic rates of soil erosion. Int Soil Water Conserv Res 5(2):77–84

    Google Scholar 

  • Novara A, Gristina L, Saladino SS, Santoro A, Cerdà A (2011) Soil erosion assessment on tillage and alternative soil managements in a Sicilian vineyard. Soil Tillage Res 117:140–147

    Google Scholar 

  • Novara A, Pisciotta A, Minacapilli M, Maltese A, Capodici F, Cerdà A, Gristina L (2018) The impact of soil erosion on soil fertility and vine vigor. A multidisciplinary approach based on field, laboratory and remote sensing approaches. Sci Total Environ 622:474–480

    PubMed  Google Scholar 

  • Nut N, Mihara M, Jeong J, Ngo B, Sigua G, Prasad PV, Reyes MR (2021) Land use and land cover changes and its impact on soil erosion in Stung Sangkae catchment of Cambodia. Sustainability 13(16):9276

    Google Scholar 

  • Panagos P, Standardi G, Borrelli P, Lugato E, Montanarella L, Bosello F (2018) Cost of agricultural productivity loss due to soil erosion in the European Union: from direct cost evaluation approaches to the use of macroeconomic models. Land Degrad Dev 29(3):471–484

    Google Scholar 

  • Panagos P, Ballabio C, Poesen J, Lugato E, Scarpa S, Montanarella L, Borrelli P (2020) A soil erosion indicator for supporting agricultural, environmental and climate policies in the European Union. Remote Sens 12(9):1365

    Google Scholar 

  • Petito M, Cantalamessa S, Pagnani G, Degiorgio F, Parisse B, Pisante M (2022) Impact of conservation agriculture on soil erosion in the annual cropland of the Apulia region (Southern Italy) based on the RUSLE-GIS-GEE framework. Agronomy 12(2):281

    Google Scholar 

  • Pimentel D (2006) Soil erosion: a food and environmental threat. Environ Dev Sustain 8(1):119–137

    Google Scholar 

  • Pimentel D, Burgess M (2013) Soil erosion threatens food production. Agriculture 3(3):443–463

    Google Scholar 

  • Pimentel D, Harvey C, Resosudarmo P, Sinclair K, Kurz D, Mcnair M et al (1995) Environmental and economic costs of soil erosion and conservation benefits. Science 267:1117–1123

    CAS  PubMed  Google Scholar 

  • Pınar M.Ö (2021) Investigation of the Relationships between Cover Management Factor, LAI and NDVI in Different Land Uses and Evaluation at Regional Scale, January, 2021 (in Turkish, PhD dissertation doc no: 664511)

  • Pınar MÖ, Erpul G (2023) Upscaling plot-based measurements of RUSLE C‑factor of different leaf-angled crops in semi-arid agroecosystems. Environ Monit Assess. https://doi.org/10.1007/s10661-023-11970-8

    Article  PubMed  Google Scholar 

  • Polykretis C, Alexakis DD, Grillakis MG, Manoudakis S (2020) Assessment of intra-annual and inter-annual variabilities of soil erosion in Crete island (Greece) by incorporating the dynamic “Nature” of R and C-factors in RUSLE Modeling. Remote Sens 12(15):2439

    Google Scholar 

  • Posthumus H, Deeks LK, Rickson RJ, Quinton JN (2015) Costs and benefits of erosion control measures in the UK. Soil Use Manag 31:16–33

    Google Scholar 

  • Prosdocimi M, Cerdà A, Tarolli P (2016) Soil water erosion on Mediterranean vineyards: A review. CATENA 141:1–21

    Google Scholar 

  • Rajmohan KS, Chandrasekaran R, Varjani S (2020) A review on occurrence of pesticides in environment and current technologies for their remediation and management. Indian J Microbiol 60:125–138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rashmi I, Karthika KS, Roy T, Shinoji KC, Kumawat A, Kala S, Pal R (2022) Soil erosion and sediments: a source of contamination and impact on agriculture productivity. In: Naeem M, Bremont JFJ, Ansari AA, Gill SS (eds) Agrochemicals in soil and environment. Springer, Singapore https://doi.org/10.1007/978-981-16-9310-6_14

    Chapter  Google Scholar 

  • Renard KG, Foster GA, Weesies DA, McCool DK, Yoder DC (1997) Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Agriculture handbook no. 703. USDA, Washington

    Google Scholar 

  • Rodrigo-Comino J (2018) Five decades of soil erosion research in “terroir”. The state-of-the-art. Earth Sci Rev 179:436–447

    Google Scholar 

  • Rodrigo-Comino J, Keesstra S, Cerdà A (2018) Soil erosion as an environmental concern in vineyards: the case study of Celler del Roure, Eastern Spain, by means of rainfall simulation experiments. Beverages 4(2):31

    Google Scholar 

  • Ruíz-Colmenero M, Bienes R, Eldridge DJ, Marques MJ (2013) Vegetation cover reduces erosion and enhances soil organic carbon in a vineyard in the Central Spain. CATENA 104:153–160

    Google Scholar 

  • Salomé C, Coll P, Lardo E, Villenave C, Blanchart E, Hinsinger P, Marsden C, Le Cadre E (2014) Relevance of use-invariant soil properties to assess soil quality of vulnerable ecosystems: the case of Mediterranean vineyards. Ecol Indic 43(2014):83–93. https://doi.org/10.1016/j.ecolind.2014.02.016

    Article  Google Scholar 

  • Salomé C, Coll P, Lardo E, Metay A, Villenave C, Marsden C et al (2016) The soil quality concept as a framework to assess management practices in vulnerable agroecosystems: a case study in Mediterranean vineyards. Ecol Indic 61:456–465

    Google Scholar 

  • Salvatori M, De Groeve J, van Loon E, De Baets B, Morellet N, Focardi S et al (2022) Day versus night use of forest by red and roe deer as determined by Corine Land Cover and Copernicus Tree Cover Density: assessing use of geographic layers in movement ecology. Landsc Ecol 37(5):1453–1468

    Google Scholar 

  • Sartori M, Philippidis G, Ferrari E, Borrelli P, Lugato E, Montanarella L, Panagos P (2019) A linkage between the biophysical and the economic: assessing the global market impacts of soil erosion. Land Use Policy 86:299–312

    Google Scholar 

  • Scherr SJ (2000) A downward spiral? Research evidence on the relationship between poverty and natural resource degradation. Food Policy 25(4):479–498

    Google Scholar 

  • Stanchi S, Zecca O, Hudek C, Pintaldi E, Viglietti D, D’Amico ME et al (2021) Effect of soil management on erosion in mountain vineyards (NW Italy). Sustainability 13(4):1991

    CAS  Google Scholar 

  • Syafrudin M, Kristanti RA, Yuniarto A, Hadibarata T, Rhee J, Al-Onazi WA et al (2021) Pesticides in drinking water—a review. Int J Environ Res Public Health 18(2):468

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tropeano D (1983) Soil erosion on vineyards in the tertiary Piedmontese basin (Northwestern Italy): studies on experimental areas. Catena Suppl 4:115–127

    Google Scholar 

  • TUİK (2023) Turkish Statistical Institute. https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr. Accessed 15 Aug 2023

  • Verstraeten G, Poesen J, Govers G, Gillijns K, Van Rompaey A, Van Oost K (2003) Integrating science, policy and farmers to reduce soil loss and sediment delivery in Flanders, Belgium. Environ Sci Policy 6(1):95–103

    Google Scholar 

  • Walker DJ, Young DL (1986) The effect of technical progress on erosion damage and economic incentives for soil conservation. Land Econ 62(1):83–93

    Google Scholar 

  • Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses—a guide for conservation planning. USDA, agricultural handbook. U.S. Government Printing Office, Washington, p 537

    Google Scholar 

  • Yang X, Van Der Zee SE, Gai L, Wesseling JG, Ritsema CJ, Geissen V (2016) Integration of transport concepts for risk assessment of pesticide erosion. Sci Total Environ 551:563–570

    PubMed  Google Scholar 

  • Yu Y, Rodrigo-Comino J (2021) Analyzing regional geographic challenges: the resilience of Chinese vineyards to land degradation using a societal and biophysical approach. Land 10(2):227

    Google Scholar 

  • Yu S, Wang F, Qu M, Yu B, Zhao Z (2021) The effect of land use/cover change on soil erosion change by spatial regression in Changwu County on the Loess Plateau in China. Forests 12(9):1209

    Google Scholar 

Download references

Acknowledgements

We would like to thank the T.R. Ministry of Environment, Urbanization and Climate Change, General Directorate of Combating Desertification and Erosion (ÇEM) who provided the data from the Water Erosion Atlas of Turkiye. Also, we are grateful to the Editor Vanessa Keinert and Anonymous reviewers for their constructive comments and suggestions for improving this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

H. Aytop: Conceptualization, Methodology, Investigation, Data analysis, Writing—original draft; M.Ö. Pınar: Methodology, Investigation, Writing—review & editing. The authors have read and approved the final manuscript.

Corresponding author

Correspondence to Melis Özge Pınar.

Ethics declarations

Conflict of interest

H. Aytop and M.Ö. Pınar declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aytop, H., Pınar, M.Ö. Evaluation of Agricultural Productivity Loss of Vineyards Through Water Erosion in Türkiye. Applied Fruit Science 66, 667–676 (2024). https://doi.org/10.1007/s10341-024-01035-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10341-024-01035-6

Keywords

Navigation