Skip to main content
Log in

Identification of Self-Incompatibility in Kyrgyzstan-Originated Apple Genotypes with Molecular Marker Technique

Identifizierung von Selbstinkompatibilität in aus Kirgisistan stammenden Apfelgenotypen mittels molekularer Markertechnik

  • Original Article / Originalbeitrag
  • Published:
Erwerbs-Obstbau Aims and scope Submit manuscript

Abstract

Kyrgyzstan is among the mother lands of apple and thus quite rich in apple genetic resources. This study was conducted to determine S‑allele profiles of apple genotypes collected from different regions of Kyrgyzstan. The apple materials used belonged to 4 different species (M. domestica, M. kirghisorum, M. sieversii, M. niedzwetzkyana) and a total of 137 genotypes were evaluated in the study. Scorable bands were obtained with the use of 11 primer combinations and band lengths varied between 210 ± 50 and 700 ± 50 bp. Present findings revealed the most common S‑allele as S46. Present findings are expected to provide contribution in selection of pollinator and main cultivar while establishing new orchards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Albuquerque CL, Denardi F, Mesquita Dantas AC, Nodari RO (2011) The self-incompatible RNase S‑alleles of Brazilian apple cultivars. Euphytica 181:277–284

    Article  CAS  Google Scholar 

  • Bošković R, Tobutt KR (1999) Correlation of stylar ribonuclease isoenzymes with incompatibility alleles in apple. Euphytica 107:29–43

    Article  Google Scholar 

  • Broothaerts W (2003) New findings in apple S‑genotype analysis resolve previous confusion and request the re-numbering of some S‑alleles. Theor Appl Genet 106:703–714

    Article  CAS  Google Scholar 

  • Broothaerts W, Janssens GA, Proost P, Broekaert WF (1995) cDNA cloning and molecular analysis of two self-incompatibility alleles from apple. Plant Mol Biol 27:499–511

    Article  CAS  Google Scholar 

  • Claessen H, Keulemans W, Poel BD, Storme ND (2019) Finding a compatible partner: self-incompatibility in European pear (Pyrus communis); molecular control, genetic determination, and impact on fertilization and fruit set. Front Plant Sci 10:407

    Article  Google Scholar 

  • De Cock K, Vander Mijnsbrugge K, Breyne P, Van Bockstaele E, Van Slycken J (2008) Morphological and AFLP-based differentiation within the taxonomical complex section Caninae (subgenus Rosa). Ann Bot 102(5):685–697

    Article  Google Scholar 

  • De Franceschi P, Bianco L, Cestaro A, Dondini L, Velasco R (2018) Characterization of 25 full-length S‑RNase alleles, including flanking regions, from a pool of resequenced apple cultivars. Plant Mol Biol 97:279–296

    Article  Google Scholar 

  • De Nettancourt D (1977) Incompatibility in angiosperms. In: Frankel R, Gal GAE, Linskens HF (eds) Monographs on theoretical and applied genetics. Springer, Berlin, pp 28–57

    Google Scholar 

  • De Nettancourt D (2001) Incompatibility and incongruity in wild and cultivated plants. Springer, Berlin

    Book  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Dreesen R, Vanholme B, Luyten K, Van L, Wynsberghe G, Fazio I, Roldá Ruiz J (2010) Analysis of Malus S‑RNase gene diversity based on a comparative study of old and modern apple cultivars and European wild apple. Mol Breed 26:693–709

    Article  CAS  Google Scholar 

  • Fraga KD, Croft DO, Kennedye FA, Tomás-Barberán GG (2019) The effects of polyphenols and other bioactives on human health. Food Funct 10:514

    Article  CAS  Google Scholar 

  • Heo S, Han SE, Kwon SI, Jun JH, Kim MK, Lee HJ (2011) Identification of S‑allele genotypes of Korean apple cultivars by using allele-specific polymerase chain reaction. Hort Environ Biotechnol 52(2):158–162

    Article  Google Scholar 

  • Janick J, Cummins JN, Brown SK, Hemmat M (1996) Apples. In: Janick J, Moore JN (eds) Fruit breeding, tree and tropical fruits, vol 1, pp 1–78

    Google Scholar 

  • Janssens GA, Goderis IJ, Broekaert WF, Broothaerts W (1995) A molecular method for S‑allele identification in apple based on allele-specific PCR. Theor Appl Genet 91:691–698

    Article  CAS  Google Scholar 

  • Jie Q, Shupeng G, Jixiang Z, Manru G, Huairui S (2005) Identification of self-incompatibility genotypes of apricot (Prunus armeniaca L.) by S‑allele-specific PCR analysis. Biotechnol Lett 27:1205–1209

    Article  Google Scholar 

  • Kakui H, Kato M, Ushijima K, Kitaguchi M, Kato S, Sassa H (2011) Sequence divergence and loss-of-function phenotypes of S locus F‑box brothers (SFBB) genes are consistent with non-self-recognition by multiple pollen determinants in self-incompatibility of Japanese pear (Pyrus pyrifolia). Plant J 68:1028–1038

    Article  CAS  Google Scholar 

  • Kao TH, McCubbin AG (1996) How flowering plants discriminate between self and non-self-pollen to prevent inbreeding. Proc Natl Acad Sci USA 93:12059–12065

    Article  CAS  Google Scholar 

  • Larsen B, Ørgaard M, Toldam-Andersen TB, Pedersen C (2016) A high-throughput method for genotyping S‑RNase alleles in apple. Mol Breed 36:1–10. https://doi.org/10.1007/s11032-016-0448-0

    Article  CAS  Google Scholar 

  • Lin W, Zhang S, Ding F, He X, Luo C, Huang G, Do M, Wang O, Yang Z, Su LH (2019) Two genes (clS1 and clF-box) involved the self-incompatibility of “Xiangshui” lemon (citrus limon (L.) Burm. f.). Plant Mol Biol Rep 37(1–2):50–62

    Article  CAS  Google Scholar 

  • Liu C, Qi X, Song L, Li Y, Li M (2018) Species identification, genetic diversity and population structure of sweet cherry commercial cultivars assessed by SSRs and the gametophytic self-incompatibility locus. Sci Hortic 237:28–35

    Article  Google Scholar 

  • Long S, Li M, Han Z, Wang K, Li T (2010) Characterization of three new S‑alleles and development of an S‑allele-specific PCR system for rapidly identifying the S‑genotype in apple cultivars. Tree Genet Genomes 6:161–168

    Article  Google Scholar 

  • Matsumoto D, Tao R (2016) Distinct self-recognition in the Prunus S‑RNase-based gametophytic self-incompatibility system. Hortic J 85:289–305

    Article  CAS  Google Scholar 

  • Pinar H, Ercisli S, Unlu M, Bircan M, Uzun A, Keles D, Baysal F, Atli HS, Yilmaz KU (2015) Determination of genetic diversity among some almond accessions. Genetika 47(1):13–22

    Article  Google Scholar 

  • Schneider D, Stern RA, Eisikowitch D, Goldway M (2001) Analysis of S‑alleles by PCR for determination of compatibility in the Red Delicious apple orchard. J Hortic Sci Biotechnol 76:596–600

    Article  CAS  Google Scholar 

  • Shogo M, Li T, Shungo O, Li Y, Bai S (2018) Efficient breeding and cultivation of type 2 red-fleshed apple cultivars using a search system for suitable apple cultivar combination. Horticult Plant J 4(6):219–225

    Article  Google Scholar 

  • Uzun A, Turgunbaev K, Abdullaev A, Pınar H, Özongun Ş, Muratbekkızı A, Badyrıv M, İlbaş Aİ, Gürcan K, Kaymak K (2019) Genetic diversity in apple accessions belong to different species collected from natural populations of Tianshan mountains, South-West Kyrgyzstan. Erwerbs-Obstbau. https://doi.org/10.1007/s10341-019-00441-5

    Article  Google Scholar 

  • Volk GM, Richards CM, Henk AD, Reilley AA, Miller DD, Forsline PL (2009) Novel diversity identified in a wild apple population from the Kyrgyz Republic. HortScience 44:516–519

    Article  Google Scholar 

  • Yan GR, Long H, Song WQ, Chen RY (2008) Genetic polymorphism of Malus sieversii populations in Xinjiang, China. Genet Resour Crop Evol 55:171–181

    Article  CAS  Google Scholar 

  • Yilmaz KU, Basbug B, Gurcan K, Pinar H, Halasz J, Ercisli S, Uzun A, Cocen E (2016) S‑Genotype profiles of Turkish apricot germplasm. Not Bot Horti Agrobo 1:67–71

    Article  Google Scholar 

  • Zhang Y, Qin L, Wang H, Chen X, Wang S (2017) Identification of S genotypes in loquat (Eriobotrya japonica Lindl.) based on allele specific PCR. Sci Hortic 225:736–742

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Scientific research Projects Department of Erciyes University (with the project number of FYL-2017-7719).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aydin Uzun.

Ethics declarations

Conflict of interest

A. Uzun, L. Ozer, K. Turgunbaev, H. Pınar, M. Yaman, K.U. Yılmaz and A. Abdullaev declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uzun, A., Ozer, L., Turgunbaev, K. et al. Identification of Self-Incompatibility in Kyrgyzstan-Originated Apple Genotypes with Molecular Marker Technique. Erwerbs-Obstbau 64, 401–406 (2022). https://doi.org/10.1007/s10341-022-00663-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10341-022-00663-0

Keywords

Schlüsselwörter

Navigation