Skip to main content
Log in

Oriented Covalent Immobilization of Engineered ZZ-Cys onto Maleimide-Sepharose: An Affinity Platform for IgG Purification

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Protein A affinity chromatography is an important technique that is widely used in purifying polyclonal and monoclonal antibodies. However, improving the IgG loading capacity of protein A affinity materials remains crucial. In this study, a smaller divalent IgG binding molecule derived from the B domain of protein A, i.e., ZZ-domain, was used to develop an affinity adsorbent with high IgG loading capacity by improving the unit area yield of the site-specific immobilization affinity ligand. The engineered ZZ-Cys was tightly immobilized onto Sepharose support via the covalent incorporation of a cysteine handle and a maleimide group, with oriented manner and divalent IgG binding capacity, thereby resulting in homogenous conjugates, namely, Sepharose–ZZSA. Approximately 1.19 mg of ZZ-Cys was coupled onto wet Sepharose g−1 and the maximum saturation binding capacity of Sepharose–ZZSA g−1 was approximately 23.80 mg of IgG. The smaller engineered ZZ-Cys can be produced at a lower cost than protein A and covalently conjugated onto matrix surface with high density and full IgG binding capacity. Thus, the proposed platform may be of general use for IgG purification in an efficient and economical manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Liu HF, Ma J, Winter C, Bayer R (2010) MAbs 2:480–499

    Article  Google Scholar 

  2. Hober S, Nord K, Linhult M (2007) J Chromatogr B Analyt Technol Biomed Life Sci 848:40–47. doi:10.1016/j.jchromb.2006.09.030

    Article  CAS  Google Scholar 

  3. Hahn R, Bauerhansl P, Shimahara K, Wizniewski C, Tscheliessnig A, Jungbauer A (2005) J Chromatogr A 1093:98–110. doi:10.1016/j.chroma.2005.07.050

    Article  CAS  Google Scholar 

  4. Johnson CP, Jensen IE, Prakasam A, Vijayendran R, Leckband D (2003) Bioconjug Chem 14:974–978. doi:10.1021/bc034063t

    Article  CAS  Google Scholar 

  5. Franco EJ, Hofstetter H, Hofstetter O (2006) J Sep Sci 29:1458–1469

    Article  CAS  Google Scholar 

  6. Cho IH, Paek EH, Lee H, Kang JY, Kim TS, Paek SH (2007) Anal Biochem 365:14–23. doi:10.1016/j.ab.2007.02.028

    Article  CAS  Google Scholar 

  7. Seo MH, Han J, Jin Z, Lee DW, Park HS, Kim HS (2011) Anal Chem 83:2841–2845. doi:10.1021/ac103334b

    Article  CAS  Google Scholar 

  8. Yang HM, Bao RM, Cheng YZ, Tang JB (2015) Anal Chim Acta 872:1–6. doi:10.1016/j.aca.2015.03.005

    Article  CAS  Google Scholar 

  9. Kang JH, Choi HJ, Hwang SY, Han SH, Jeon JY, Lee EK (2007) J Chromatogr A 1161:9–14. doi:10.1016/j.chroma.2007.05.023

    Article  CAS  Google Scholar 

  10. Batalla P, Bolivar JM, Lopez-Gallego F, Guisan JM (2012) J Chromatogr A 1262:56–63. doi:10.1016/j.chroma.2012.08.058

    Article  CAS  Google Scholar 

  11. Jung Y, Lee JM, Kim JW, Yoon J, Cho H, Chung BH (2009) Anal Chem 81:936–942. doi:10.1021/ac8014565

    Article  CAS  Google Scholar 

  12. Chalker JM, Bernardes GJ, Davis BG (2011) Acc Chem Res 44:730–741. doi:10.1021/ar200056q

    Article  CAS  Google Scholar 

  13. Pabst TM, Palmgren R, Forss A, Vasic J, Fonseca M, Thompson C, Wang WK, Wang X, Hunter AK (2014) J Chromatogr A 1362:180–185. doi:10.1016/j.chroma.2014.08.046

    Article  CAS  Google Scholar 

  14. Graille M, Stura EA, Corper AL, Sutton BJ, Taussig MJ, Charbonnier JB, Silverman GJ (2000) Proc Natl Acad Sci USA 97:5399–5404

    Article  CAS  Google Scholar 

  15. Sjodahl J (1977) Eur J Biochem 78:471–490

    Article  CAS  Google Scholar 

  16. Moks T, Abrahmsen L, Nilsson B, Hellman U, Sjoquist J, Uhlen M (1986) Eur J Biochem 156:637–643

    Article  CAS  Google Scholar 

  17. Ghose S, Allen M, Hubbard B, Brooks C, Cramer SM (2005) Biotechnol Bioeng 92:665–673. doi:10.1002/bit.20729

    Article  CAS  Google Scholar 

  18. Ljungquist C, Jansson B, Moks T, Uhlen M (1989) Eur J Biochem 186:557–561

    Article  CAS  Google Scholar 

  19. Ghose S, Zhang J, Conley L, Caple R, Williams KP, Cecchini D (2014) Biotechnol Prog 30:1335–1340. doi:10.1002/btpr.1980

    Article  CAS  Google Scholar 

  20. Zimmermann JL, Nicolaus T, Neuert G, Blank K (2010) Nat Protoc 5:975–985. doi:10.1038/nprot.2010.49

    Article  CAS  Google Scholar 

  21. Song HY, Zhou X, Hobley J, Su X (2012) Langmuir 28:997–1004. doi:10.1021/la202734f

    Article  CAS  Google Scholar 

  22. Lewis JG, Rehm BH (2009) J Immunol Methods 346:71–74. doi:10.1016/j.jim.2009.04.011

    Article  CAS  Google Scholar 

  23. Chen C, Huang QL, Jiang SH, Pan X, Hua ZC (2006) Biotechnol Appl Biochem 45:87–92. doi:10.1042/BA20060055

    Article  Google Scholar 

  24. Solomon B, Raviv O, Leibman E, Fleminger G (1992) J Chromatogr 597:257–262

    Article  CAS  Google Scholar 

  25. Lao XZ, Zhou YL, Zheng H (2013) Biomed Environ Sci 26:916–919. doi:10.3967/bes2013.021

    CAS  Google Scholar 

  26. Tang JB, Sun XF, Yang HM, Zhang BG, Li ZJ, Lin ZJ, Gao ZQ (2013) Anal Chim Acta 776:74–78. doi:10.1016/j.aca.2013.03.017

    Article  CAS  Google Scholar 

  27. Steffens GC, Yao C, Prevel P, Markowicz M, Schenck P, Noah EM, Pallua N (2004) Tissue Eng 10:1502–1509. doi:10.1089/ten.2004.10.1502

    Article  CAS  Google Scholar 

  28. O’Shannessy DJ, Brigham-Burke M, Peck K (1992) Anal Biochem 205:132–136

    Article  Google Scholar 

  29. Matsumoto I, Seno N, Golovtchenko-Matsumoto AM, Osawa T (1980) J Biochem 87:535–540

    CAS  Google Scholar 

  30. Sundberg L, Porath J (1974) J Chromatogr 90:87–98

    Article  CAS  Google Scholar 

  31. Rusmini F, Zhong Z, Feijen J (2007) Biomacromolecules 8:1775–1789. doi:10.1021/bm061197b

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Scientific Foundation of China (81201346, 81573717), the Natural Scientific Foundation of Shandong Province (ZR2013HL066, ZR2014BL006, and ZR2015CL014), and National Key Technology R&D Program of the Ministry of Science and Technology (2013GA740103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Bao Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, RM., Yang, HM., Yu, CM. et al. Oriented Covalent Immobilization of Engineered ZZ-Cys onto Maleimide-Sepharose: An Affinity Platform for IgG Purification. Chromatographia 79, 1271–1276 (2016). https://doi.org/10.1007/s10337-016-3146-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-016-3146-5

Keywords

Navigation