Skip to main content
Log in

Thirteen decades of peptide synthesis: key developments in solid phase peptide synthesis and amide bond formation utilized in peptide ligation

  • Invited Review
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

A historical overview of peptide chemistry from T. Curtius to E. Fischer to M. Bergmann and L. Zervas is first presented. Next, the fundamentals of peptide synthesis with a focus on solid phase peptide synthesis by R. B. Merrifield are described. Immobilization strategies to attach the first amino acid to the resin, coupling strategies in stepwise peptide chain elongation, and approaches to synthesize difficult peptide sequences are also shown. A brief comparison between tert-butyloxycarbonyl (Boc)/benzyl (Bzl) strategy and 9-fluorenylmethoxycarbonyl (Fmoc)/tert-butyl (t -Bu) strategy utilized in solid phase peptide synthesis is given with an emphasis on the latter. Finally, the review focuses on the discovery and development of peptide ligation and the latest advances in this field including native amide bond formation strategies, these include the native chemical ligation, α-ketoacid–hydroxylamine ligation, and serine/threonine ligation which are the most commonly used chemoselective ligation methods that provide amide bond at the ligation site. This review provides an overview of the literature concerning the most important advances in the chemical synthesis of proteins and peptides covering the period from 1882 to 2017.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Fig. 1
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23

Similar content being viewed by others

References

  • Abdel-Aal A-BM, Papageorgiou G, Raz R, Quibell M, Burlina F, Offer J (2016) A backbone amide protecting group for overcoming difficult sequences and suppressing aspartimide formation. J Pept Sci 22:360–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abdelmoty I, Albericio F, Carpino LA, Foxman BM, Kates SA (1994) Structural studies of reagents for peptide bond formation: crystal and molecular structures of HBTU and HATU. Lett Pept Sci 1:57–67

    Article  CAS  Google Scholar 

  • Akabori S, Ikenaka T, Matsumoto K (1951) Asymmetric synthesis of amino acids. Proc Jpn Acad 27:7–9

    CAS  Google Scholar 

  • Albericio F, Barany G (1987) An acid-labile anchoring linkage for solid-phase synthesis of C-terminal peptide amides under mild conditions. Int J Pept Protein Res 30:206–216

    Article  CAS  PubMed  Google Scholar 

  • Albericio F, Barany G (1991) Hypersensitive acid-labile (HAL) tris(alkoxy)benzyl ester anchoring for solid-phase synthesis of protected peptide segments. Tetrahedron Lett 32:1015–1018

    Article  CAS  Google Scholar 

  • Albericio F, Cases M, Alsina J, Triolo SA, Carpino LA, Kates SA (1997) On the use of PyAOP, a phosphonium salt derived from HOAt, in solid-phase peptide synthesis. Tetrahedron Lett 38:4853–4856

    Article  CAS  Google Scholar 

  • Albericio F, Bofill JM, El-Faham A, Kates SA (1998) Use of onium salt-based coupling reagents in peptide synthesis. J Org Chem 63:9678–9683

    Article  CAS  Google Scholar 

  • Albericio F, Tulla-Puche J, Kates SA (2011) Fmoc methodology: cleavage from the resin and final deprotection. In: Hughes AB (ed) Amino acids, peptides and proteins in organic chemistry, vol 3. Wiley-VCH Verlag GmbH & Co, Weinheim, pp 349–369

    Chapter  Google Scholar 

  • Alferiev IS, Connolly JM, Levy RJ (2005) A novel mercapto-bisphosphonate as an efficient anticalcification agent for bioprosthetic tissues. J Organomet Chem 690:2543–2547

    Article  CAS  Google Scholar 

  • Algar WR, Dawson P, Medintz IL (eds) (2017) Chemoselective and bioorthogonal ligation reactions: concepts and applications, vol 1. Wiley-VCH Verlag GmbH & Co, KGaA. ISBN 978-3-527-33436-0

    Google Scholar 

  • Alsina J, Rabanal F, Chiva C, Giralt E, Albericio F (1998) Active carbonate resins: application to the solid-phase synthesis of alcohol, carbamate and cyclic peptides. Tetrahedron 54:10125–10152

    Article  CAS  Google Scholar 

  • Al-Warhi TI, Al-Hazimi HMA, El-Faham A (2012) Recent development in peptide coupling reagents. J Saudi Chem Soc 16:97–116

    Article  CAS  Google Scholar 

  • Anderson GW, Zimmerman JE, Callahan FJ (1963) N-Hydroxysuccinimide esters in peptide synthesis. J Am Chem Soc 85:3039

    Article  CAS  Google Scholar 

  • Atherton E, Clive DLJ, Sheppard RC (1975) Polyamide supports for polypeptide synthesis. J Am Chem Soc 97:6584–6585

    Article  CAS  PubMed  Google Scholar 

  • Atherton E, Fox H, Harkiss D, Logan CJ, Sheppard RC, Williams BJ (1978) A mild procedure for solid phase peptide synthesis: use of fluorenylmethoxycarbonylamino-acids. J Chem Soc Chem Commun 13:537–539

    Article  Google Scholar 

  • Atherton E, Brown E, Sheppard RC, Rosevear A (1981a) A physically supported gel polymer for low pressure, continuous flow solid phase reactions. Application to solid phase peptide synthesis. J Chem Soc Chem Commun 21:1151–1152

    Article  Google Scholar 

  • Atherton E, Logan CJ, Sheppard RC (1981b) Peptide synthesis. Part 2. Procedures for solid-phase synthesis using Nα fluorenylmethoxycarbonylamino-acids on polyamide supports. Synthesis of substance P and of acyl carrier protein 65–74 decapeptide. J Chem Soc Perkin Trans 1:538–546

    Article  Google Scholar 

  • Bannwarth W, Schmidt D, Stallard RL, Hornung C, Knorr R, Müller F (1988) Bathophenanthroline-ruthenium(II) complexes as non-radioactive labels for oligonucleotides which can be measured by time-resolved fluorescence techniques. Helv Chim Acta 71:2085–2099

    Article  CAS  Google Scholar 

  • Barlos K, Chatzi O, Gatos D, Stavropoulos G (1991) 2-Chlorotrityl chloride resin: studies on anchoring of Fmoc-amino acids and peptide cleavage. Int J Pept Protein Res 37:513–520

    CAS  PubMed  Google Scholar 

  • Barrett GC, Elmore DT (2004) Amino acids and peptides. Cambridge University Press, Cambridge. ISBN 0-511-03952-2

    Google Scholar 

  • Bates AJ, Galpin IJ, Hallett A, Hudson D, Kenner GW, Ramage R, Sheppard RC (1975) A new reagent for polypeptide synthesis: μ-Oxo-bis-[tris-(dimethylamino)-phosphonium]-bis-tetrafluoroborate. Helv Chim Acta 58:688–696

    Article  CAS  PubMed  Google Scholar 

  • Bayer E (1991) Towards the chemical synthesis of proteins. Angew Chem Int Ed 30:113–129

    Article  Google Scholar 

  • Beck W, Jung G (1994) Convenient reduction of S-oxides in synthetic peptides, lipopeptides and peptide libraries. Lett Pept Sci 1:31–37

    Article  CAS  Google Scholar 

  • Bedford J, Hyde C, Johnson T, Jun W, Owen D, Quibell M, Sheppard RC (1992) Amino acid structure and “difficult sequences” in solid phase peptide synthesis. Int J Pept Protein Res 40:300–307

    Article  CAS  PubMed  Google Scholar 

  • Behrendt R, White P, Offer J (2016) Advances in Fmoc solid-phase peptide synthesis. J Pept Sci 22:4–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benoiton NL, Chen FMF (1981) Not the alkoxycarbonylamino-acid O-acylisourea. J Chem Soc Chem Commun 11:543–545

    Article  Google Scholar 

  • Berg RH, Almdal K, Pedersen WB, Holm A, Tam JP, Merrifield RB (1989) Long-chain polystyrene-grafted polyethylene film matrix: a new support for solid-phase peptide synthesis. J Am Chem Soc 111:8024–8026

    Article  CAS  Google Scholar 

  • Bergbreiter DE (1999) Alternative polymer supports for organic chemistry. Med Res Rev 19(5):439–450

    Article  CAS  PubMed  Google Scholar 

  • Bergmann M, Zervas L (1932) Über ein allgemeines Verfahren der peptid-synthese. Ber Dtsch Chem Ges 65(7):1192–1201

    Article  Google Scholar 

  • Blackburn C (1998) Polymer supports for solid-phase organic synthesis. Biopolymers (Peptide Science) 47:311–351

    Article  CAS  Google Scholar 

  • Blake J (1979) Use of cyclopentyl ester protection for aspartic acid to reduce base catalyzed succinimide formation in solid-phase peptide synthesis. Int J Pept Protein Res 13:418–425

    Article  CAS  PubMed  Google Scholar 

  • Boas U, Brask J, Jensen KJ (2009) Backbone amide linker in solid-phase synthesis. Chem Rev 109:2092–2118

    Article  CAS  PubMed  Google Scholar 

  • Bodanszky M, du Vigneaud V (1959) A method of synthesis of long peptide chains using a synthesis of oxytocin as an example. J Am Chem Soc 81:5688–5691

    Article  CAS  Google Scholar 

  • Bodanszky M, Deshmane SS, Martinez J (1979) Side reactions in peptide synthesis. 11. Possible removal of the 9-fluorenylmethyloxycarbonyl group by the amino components during coupling. J Org Chem 44:1622–1625

    Article  CAS  Google Scholar 

  • Bode JW (2017) Chemical protein synthesis with the α-ketoacid–hydroxylamine ligation. Acc Chem Res. https://doi.org/10.1021/acs.accounts.7b00277 (in press)

    PubMed  Google Scholar 

  • Bode JW, Fox RM, Baucom KD (2006) Chemoselective amide ligations by decarboxylative condensations of N-alkylhydroxylamines and α-ketoacids. Angew Chem Int Ed 45:1248–1252

    Article  CAS  Google Scholar 

  • Boojamra CG, Burow KM, Ellman JA (1995) An expedient and high-yielding method for the solid-phase synthesis of diverse 1,4-benzodiazepine-2,5-diones. J Org Chem 60:5742–5743

    Article  CAS  Google Scholar 

  • Bourne GT, Meutermans WDF, Alewood PF, McGeary RP, Scanlon M, Watson AA, Smythe ML (1999) A backbone linker for Boc-based peptide synthesis and on-resin cyclization: synthesis of stylostatin 1. J Org Chem 64:3095–3101

    Article  CAS  PubMed  Google Scholar 

  • Breipohl G, König W (1992) Coupling reagent for peptide synthesis. US patent 5166394 A

  • Canne LE, Walker SM, Kent SBH (1995) A general method for the synthesis of thioester resin linkers for use in the solid phase synthesis of peptide-α-thioacids. Tetrahedron Lett 36(8):1217–1220

    Article  CAS  Google Scholar 

  • Carpino LA (1987) The 9-fluorenylmethoxycarbonyl family of base sensitive amino-protecting group. Acc Chem Res 20:401–407

    Article  CAS  Google Scholar 

  • Carpino LA (1993) 1-Hydroxy-7-azabenzotriazole. An efficient peptide coupling additive. J Am Chem Soc 115:4397–4398

    Article  CAS  Google Scholar 

  • Carpino LA, Han GY (1970) The 9-fluorenylmethoxycarbonyl function, a new base-sensitive amino-protecting group. J Am Chem Soc 92:5748–5749

    Article  CAS  Google Scholar 

  • Carpino LA, Han GY (1972) The 9-Fluorenylmethoxycarbonyl amino-protecting group. J Org Chem 37:3404–3409

    Article  CAS  Google Scholar 

  • Carpino LA, Henklein P, Foxman BM, Abdelmoty I, Costisella B, Wray V, Domke T, El-Faham A, Mügge C (2001) The solid state and solution structure of HAPyU. J Org Chem 66:5245–5247

    Article  CAS  PubMed  Google Scholar 

  • Carpino LA, Imazumi H, El-Faham A, Ferrer FJ, Zhang C, Lee Y, Foxman BM, Henklein P, Hanay C, Mügge C, Wenschuh H, Klose J, Beyermann M, Bienert M (2002) The uronium/guanidinium peptide coupling reagents: finally the true uronium salts. Angew Chem Int Ed 41:441–445

    Article  CAS  Google Scholar 

  • Castro B, Dormoy JR, Evin G, Selve C (1975) Reactifs de couplage peptidique IV (1)-L’hexafluorophosphate de benzotriazolyl N-oxytrisdimethylamino phosphonium (BOP). Tetrahedron Lett 16(14):1219–1222

    Article  Google Scholar 

  • Cergol KM, Thompson RE, Malins LR, Turner P, Payne RJ (2014) One-pot peptide ligation-desulfurization at glutamate. Org Lett 16:290–293

    Article  CAS  PubMed  Google Scholar 

  • Chan WC, White PD (2000) Fmoc solid phase peptide synthesis: a practical approach. Oxford University Press, New York. ISBN 9780199637249

    Google Scholar 

  • Chang C-D, Meienhofer J (1978) Solid-phase peptide synthesis using mild base cleavage of Nα-fluorenylmethyloxycarbonylamino acids, exemplified by a synthesis of dihydrosomatostatin. Int J Pept Protein Res 11:246–249

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Wang P, Zhu J, Wan Q, Danishefsky SJ (2010) A program for ligation at threonine sites: application to the controlled total synthesis of glycopeptides. Tetrahedron 66:2277–2283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cherkupally P, Acosta GA, Ramesh S, De la Torre BG, Govender T, Kruger HG, Albericio F (2014) Solid-phase peptide synthesis (SPPS), C-terminal vs. side-chain anchoring: a reality or a myth. Amino Acids 46(8):1827–1838

    Article  CAS  PubMed  Google Scholar 

  • Coste J, Le-Nguyen D, Castro B (1990) PyBOP®: a new peptide coupling reagent devoid of toxic byproduct. Tetrahedron Lett 31:205–208

    Article  CAS  Google Scholar 

  • Coste J, Frérot E, Jouin P (1994) Coupling N-Methylated amino acids using PyBroP and PyCloP halogenophosphonium salts: mechanism and fields of application. J Org Chem 59:2437–2447

    Article  CAS  Google Scholar 

  • Crich D, Banerjee A (2007) Native chemical ligation at phenylalanine. J Am Chem Soc 129:10064–10065

    Article  CAS  PubMed  Google Scholar 

  • Curtius T (1882) Ueber einige neue der Hippursäure analog constituirte, synthetisch dargestellte Amidosäuren. J Prakt Chemie 26:145–208

    Article  Google Scholar 

  • Curtius T (1902) Synthetische Versuche mit Hippurazid. Ber Dtsch Chem Ges 35:3226–3228

    Article  CAS  Google Scholar 

  • Curtius T (1904) Verkettung von Amidosäuren. I. Abhandlung. J Prakt Chemie 70(1):57–72

    Article  CAS  Google Scholar 

  • Curtius T, Gumlich O (1904) Verkettung von Amidosäuren; VII. Abhandlung. Kettenbildung zwischen Hippurazid und β-Amino-α-oxypropionsäure und β-Aminobuttersäure. J Prakt Chemie 70(1):195–223

    Article  CAS  Google Scholar 

  • Curtius T, Müller E (1904) Verkettung von Amidosäuren; VIII. Abhandlung. Über Hippuryl-γ-aminobuttersäure und Hippuryl-β-phenyl-α-alanin. J Prakt Chemie 70(1):223–229

    Article  CAS  Google Scholar 

  • D’Andrea LD, Romanelli A (eds) (2017) Chemical ligation: tools for biomolecule synthesis and modification, 1st edn. Wiley, Hobeken. ISBN 978-1-119-04410-9

    Google Scholar 

  • Dawson PE, Kent SBH (2000) Synthesis of native proteins by chemical ligation. Annu Rev Biochem 69:923–960

    Article  CAS  PubMed  Google Scholar 

  • Dawson PE, Muir TW, Clark-Lewis I, Kent SBH (1994) Synthesis of proteins by native chemical ligation. Science 266:776–779

    Article  CAS  PubMed  Google Scholar 

  • de Milton RCL, Milton SCF, Adams PA (1990) Prediction of difficult sequences in solid-phase peptide synthesis. J Am Chem Soc 112:6039–6046

    Article  CAS  Google Scholar 

  • DeGrado WF, Kaiser ET (1980) Polymer-bound oxime esters as supports for solid-phase peptide synthesis. The preparation of protected peptide fragments. J Org Chem 45:1295–1300

    Article  CAS  Google Scholar 

  • DeTar DF, Silverstein R (1966) Reaction of carbodiimides. I. The mechanisms of the reactions of acetic acid with dicyclohexylcarbodiimide. J Am Chem Soc 88:1013–1019

    Article  CAS  Google Scholar 

  • Ding H, Shigenaga A, Sato K, Morishita K, Otaka A (2011) Dual kinetically controlled native chemical ligation using a combination of sulfanylproline and sulfanylethylanilide peptide. Org Lett 13(20):5588–5591

    Article  CAS  PubMed  Google Scholar 

  • Dirksen A, Dirksen S, Hackeng TM, Dawson PE (2006a) Nucleophilic catalysis of hydrazone formation and transimination: implications for dynamic covalent chemistry. J Am Chem Soc 128:15602–15603

    Article  CAS  PubMed  Google Scholar 

  • Dirksen A, Hackeng TM, Dawson PE (2006b) Nucleophilic catalysis of oxime ligation. Angew Chem Int Ed 45:7581–7584

    Article  CAS  Google Scholar 

  • Dölling R, Beyermann M, Haenel J, Kernchen F, Krause E, Franke P, Brudel M, Bienert M (1994) Piperidine-mediated side product formation for Asp(OBut)-containing peptides. J Chem Soc Chem Commun 7:853–854

    Article  Google Scholar 

  • Dourtoglou V, Gross B (1984) O-Benzotriazolyl-N, N, N′, N′-tetramethyluronium hexafluorophosphate as coupling reagent for the synthesis of peptides of biological interest. Synthesis 7:572–574

    Article  Google Scholar 

  • Dourtoglou V, Ziegler J-C, Gross B (1978) L’hexafluorophosphate de O-benzotriazolyl-N,N-tetramethyluronium: un reactif de couplage peptidique nouveau et efficace. Tetrahedron Lett 19:1269–1272

    Article  Google Scholar 

  • du Vigneaud V, Ressler C, Swan JM, Roberts CW, Katsoyannis PG, Gordon S (1953) The synthesis of an octapeptide amide with hormonal activity of oxytocin. J Am Chem Soc 75:4879–4880

    Article  Google Scholar 

  • du Vigneaud V, Ressler C, Swan JM, Roberts CW, Katsoyannis PG (1954) The synthesis of oxytocin. J Am Chem Soc 76:3115–3121

    Article  Google Scholar 

  • El-Faham A, Albericio F (2011) Peptide coupling reagents, more than a letter soup. Chem Rev 111:6557–6602

    Article  CAS  PubMed  Google Scholar 

  • El-Faham A, Subirós-Funosas R, Prohens R, Albericio F (2009) COMU: a safer and more effective replacement for benzotriazole-based uronium coupling reagents. Chem Eur J 15:9404–9416

    Article  CAS  PubMed  Google Scholar 

  • Erdélyi M, Gogoll A (2002) Rapid microwave-assisted solid phase peptide synthesis. Synthesis 11:1592–1596

    Google Scholar 

  • Estep KG, Neipp CE, Stramiello LMS, Adam MD, Allen MP, Robinson S, Roskamp EJ (1998) Indole resin: a versatile new support for the solid-phase synthesis of organic molecules. J Org Chem 63:5300–5301

    Article  CAS  Google Scholar 

  • Felix AM, Heimer EP, Lambros TJ, Tzougraki C, Meienhofer J (1978) Rapid removal of protecting groups from peptides by catalytic transfer hydrogenation with 1,4-cyclohexadiene. J Org Chem 43:4194–4196

    Article  CAS  Google Scholar 

  • Fields GB, Noble RL (1990) Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int J Pept Protein Res 35:161–214

    Article  CAS  PubMed  Google Scholar 

  • Fischer E (1905) Synthese von polypeptiden. IX. Chloride der Aminosäuren und ihrer Acylderivate. Ber Dtsch Chem Ges 38:605–619

    Article  CAS  Google Scholar 

  • Fischer E (1907) Synthese von polypeptiden. XVII. Ber Dtsch Chem Ges 40:1754–1767

    Article  CAS  Google Scholar 

  • Fischer E, Fourneau E (1901) Ueber einige Derivate des Glykocolls. Ber Dtsch Chem Bunsenges 34(2):2868–2877

    Article  Google Scholar 

  • Fivush AM, Willson TM (1997) AMEBA: an acid sensitive aldehyde resin for solid phase synthesis. Tetrahedron Lett 38:7151–7154

    Article  CAS  Google Scholar 

  • Gaertner H, Villain M, Botti P, Canne L (2004) Synthesis of a thioester linker precursor for a general preparation of peptide C-terminal thioacids. Tetrahedron Lett 45:2239–2241

    Article  CAS  Google Scholar 

  • García-Martín F, Quintanar-Audelo M, García-Ramos Y, Cruz LJ, Gravel C, Furic R, Côté S, Tulla-Puche J, Albericio F (2006) ChemMatrix, a poly(ethylene glycol)-based support for the solid-phase synthesis of complex peptides. J Comb Chem 8:213–220

    Article  PubMed  CAS  Google Scholar 

  • Garigipati RS (1997) Reagents for combinatorial organic synthesis: preparation and uses of Rink-chloride. Tetrahedron Lett 38:6807–6810

    Article  CAS  Google Scholar 

  • Gawne G, Kenner GW, Sheppard RC (1969) Acyloxyphosphonium salts as acylating agents. A new synthesis of peptides. J Am Chem Soc 91:5669–5671

    Article  CAS  Google Scholar 

  • Geysen HM, Meloen RH, Barteling SJ (1984) Use of a peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc Natl Acad Sci USA 81:3998–4002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gieselman MD, Xie L, van der Donk WA (2001) Synthesis of a selenocysteine-containing peptide by native chemical ligation. Org Lett 3:1331–1334

    Article  CAS  PubMed  Google Scholar 

  • Goodman M, Stueben KC (1962) Amino acid active esters. III. Base-catalyzed racemization of peptide active esters. J Org Chem 27:3409–3416

    Article  CAS  Google Scholar 

  • Goodman M, Cai W, Smith N (2003) The bold legacy of Emil Fischer. J Pept Sci 9:594–603

    Article  CAS  PubMed  Google Scholar 

  • Haack T, Mutter M (1992) Serine derived oxazolidines as secondary structure disrupting, solubilizing building blocks in peptide synthesis. Tetrahedron Lett 33:1589–1592

    Article  CAS  Google Scholar 

  • Haase C, Rohde H, Seitz O (2008) Native chemical ligation at valine. Angew Chem Int Ed 47:6807–6810

    Article  CAS  Google Scholar 

  • Hackenberger CPR, Schwarzer D (2008) Chemoselective ligation and modification strategies for peptides and proteins. Angew Chem Int Ed 47:10030–10074

    Article  CAS  Google Scholar 

  • Hackenberger CPR, Friel CT, Radford SE, Imperiali B (2005) Semisynthesis of a glycosylated Im7 analogue for protein folding studies. J Am Chem Soc 127:12882–12889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hackenberger CPR, Bode JW, Schwarzer D (2011) Chemoselective peptide ligation: a privileged tool for protein synthesis. In: Hughes AB (ed) Amino acids, peptides and proteins in organic chemistry, vol 3. Wiley-VCH Verlag GmbH & Co, Weinheim, pp 445–493

    Chapter  Google Scholar 

  • Han S-Y, Kim Y-A (2004) Recent development of peptide coupling reagents in organic synthesis. Tetrahedron 60:2447–2467

    Article  CAS  Google Scholar 

  • Hanna CC, Kulkarni SS, Watson EE, Premdjee B, Payne RJ (2017) Solid-phase synthesis of peptide selenoesters via a side-chain anchoring strategy. Chem Commun 53:5424–5427

    Article  CAS  Google Scholar 

  • Harmand TJ, Murar CE, Bode JW (2016) Protein chemical synthesis by α-ketoacid–hydroxylamine ligation. Nat Protoc 11(6):1130–1147

    Article  CAS  PubMed  Google Scholar 

  • Harmand TJ, Pattabiraman VR, Bode JW (2017) Chemical synthesis of the highly hydrophobic antiviral membrane-associated protein IFITM3 and modified variants. Angew Chem Int Ed. https://doi.org/10.1002/anie.201707554v (in press)

    Google Scholar 

  • Harpaz Z, Siman P, Kumar KSA, Brik A (2010) Protein synthesis assisted by native chemical ligation at leucine. ChemBioChem 11:1232–1235

    Article  CAS  PubMed  Google Scholar 

  • Harpaz Z, Loibl S, Seitz O (2016) Native chemical ligation at a base-labile 4-mercaptobutyrate Nα-auxiliary. Bioorg Med Chem Lett 26:1434–1437

    Article  CAS  PubMed  Google Scholar 

  • Hauske JR, Dorff P (1995) A solid phase CBZ chloride equivalent—a new matrix specific linker. Tetrahedron Lett 36:1589–1592

    Article  CAS  Google Scholar 

  • Henkel B, Zhang L, Bayer E (1997) Investigations on solid-phase peptide synthesis in N-to-C direction (inverse synthesis). Eur J Org Chem 10:2161–2168

    Google Scholar 

  • Hild G, Okasha R (1985) Kinetic investigation of the free radical crosslinking copolymerization in the pre-gel state, 1. Styrene/m- and p-divinylbenzene systems. Makramol Chem 186:93–110

    Article  CAS  Google Scholar 

  • Hondal RJ (2005) Incorporation of selenocysteine into proteins using peptide ligation. Protein Pept Lett 12:757–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horikawa M, Shigeri Y, Yumoto N, Yoshikawa S, Nakajima T, Ohfune Y (1998) Syntheses of potent Leu-enkephalin analogs possessing β-hydroxy-α,α-disubstituted-α-amino acid and their characterization to opioid receptors. Bioorg Med Chem Lett 8:2027–2032

    Article  CAS  PubMed  Google Scholar 

  • Houghten RA (1985) General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids. Proc Natl Acad Sci USA 82:5131–5135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudson D (1988) Methodological implications of simultaneous solid-phase peptide synthesis. 1. Comparison of different coupling procedures. J Org Chem 53:617–624

    Article  CAS  Google Scholar 

  • Hudson D (1999) Matrix assisted synthetic transformations: a mosaic of diverse contributions. I. The pattern emerges. J Comb Chem 1:333–360

    Article  CAS  PubMed  Google Scholar 

  • Huisgen R, Szeimies G, Möbius L (1967) 1.3-Dipolare Cycloadditionen, XXXII. Kinetik der Additionen organischer Azide an CC-Mehrfachbindungen. Chem Ber 100:2494–2507

    Article  CAS  Google Scholar 

  • Isidro-Llobet A, Álvarez M, Albericio F (2009) Amino acid-protecting groups. Chem Rev 109:2455–2504

    Article  CAS  PubMed  Google Scholar 

  • Jaradat DMM (2016) Synthetic antimicrobial peptides containing multiple disulfide bridges: biomimetics of natural antimicrobial peptides. In: proceedings of 34th European Peptide Symposium, Leipzig, Germany

  • Jaradat DMM, Hamouda H, Christian PR, Hackenberger CP (2010) Solid-phase synthesis of phosphoramidate-linked glycopeptides. Eur J Org Chem 26:5004–5009

    Article  CAS  Google Scholar 

  • Kalia J, Raines RT (2010) Advances in bioconjugation. Curr Org Chem 14(2):138–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karas JA, Patil NA, Tailhades J, Sani M-A, Scanlon DB, Forbes BE, Gardiner J, Separovic F, Wade JD, Hossain MA (2016) Total chemical synthesis of an intra-A-chain cystathionine human insulin analogue with enhanced thermal stability. Angew Chem Int Ed 55:14743–14747

    Article  CAS  Google Scholar 

  • Katritzky AR, Haase DN, Johnson JV, Chung A (2009) Benzotriazole-assisted solid-phase assembly of Leu-enkephalin, amyloid segment 34–42, and other “difficult” peptide sequences. J Org Chem 74:2028–2032

    Article  CAS  PubMed  Google Scholar 

  • Kemp DS (1981) The amine capture strategy for peptide bond formation—an outline of progress. Biopolymers 20:1793–1804

    Article  CAS  Google Scholar 

  • Kempe M, Barany G (1996) CLEAR: a novel family of highly cross-linked polymeric supports for solid-phase peptide synthesis. J Am Chem Soc 118:7083–7093

    Article  CAS  Google Scholar 

  • Kent SBH (1988) Chemical synthesis of peptides and proteins. Ann Rev Biochem 57:957–989

    Article  CAS  PubMed  Google Scholar 

  • Kent SBH (2009) Total chemical synthesis of proteins. Chem Soc Rev 38:338–351

    Article  CAS  PubMed  Google Scholar 

  • Kent SBH, Mitchell AR, Engelhard M, Merrifield RB (1979) Mechanisms and prevention of trifluoroacetylation in solid-phase peptide synthesis. Proc Natl Acad Sci USA 76(5):2180–2184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimmerlin T, Seebach D (2005) ‘100 years of peptide synthesis’: ligation methods for peptide and protein synthesis with applications to β-peptide assemblies. J Pept Res 65:229–260

    Article  CAS  PubMed  Google Scholar 

  • Knorr R, Trzeciak A, Bannwarth W, Gillessen D (1989) New coupling reagents in peptide chemistry. Tetrahedron Lett 30:1927–1930

    Article  CAS  Google Scholar 

  • König W, Geiger R (1970) Eine neue Methode zur Synthese von Peptiden: aktivierung der Carboxylgruppe mit Dicyclohexylcarbodiimid unter Zusatz von 1-Hydroxy-benzotriazolen. Chem Ber 103:788–798

    Article  PubMed  Google Scholar 

  • Kovacs J, Ceprini MQ, Dupraz CA, Schmit GN (1967a) Pentachlorophenyl esters of N-carbobenzoxy-l-amino acids. J Org Chem 32:3696–3698

    Article  CAS  PubMed  Google Scholar 

  • Kovacs J, Kisfaludy L, Ceprini MQ (1967b) On the optical purity of peptide active esters prepared by N,N′-dicyclohexylcarbodiimide and “Complexes”of N,N′-dicyclohexylcarbodiimide-pentachlorophenol and N,N′-dicyclohexylcarbodiimide-pentafluorophenol. J Am Chem Soc 89:183–184

    Article  CAS  PubMed  Google Scholar 

  • Krchñák V, Flegelová Z, Vágner J (1993) Aggregation of resin-bound peptides during solid-phase peptide synthesis. Prediction of difficult sequences. Int J Pept Protein Res 42:450–454

    Article  PubMed  Google Scholar 

  • Kuromizu K, Meienhofer J (1974) Removal of the Nα-benzyloxycarbonyl group from cysteine-containing peptides by catalytic hydrogenolysis in liquid ammonia, exemplified by a synthesis of oxytocin. J Am Chem Soc 96:4978–4981

    Article  CAS  PubMed  Google Scholar 

  • Kwant PW (1979) Kinetics of the copolymerization of styrene with small quantities of divinylbenzenes. J Polym Sci Part A Polym Chem 17:1331–1338

    Article  CAS  Google Scholar 

  • Larsen BD, Holm A (1998) Sequence-assisted peptide synthesis (SAPS). J Pept Res 52:470–476

    Article  CAS  Google Scholar 

  • Lee JB (1966) Preparation of acyl halides under very mild conditions. J Am Chem Soc 88:3440–3441

    Article  CAS  Google Scholar 

  • Letsinger RL, Kornet MJ (1963) Popcorn polymer as a support in multistep syntheses. J Am Chem Soc 85:3045–3046

    Article  CAS  Google Scholar 

  • Letsinger RL, Kornet MJ, Mahadevan V, Jerina DM (1964) Reactions on polymer supports. J Am Chem Soc 86:5163–5165

    Article  CAS  Google Scholar 

  • Li T, Li X (2017) Development of serine/threonine ligation and its applications. In: D’Andrea LD, Romanelli A (eds) Chemical ligation: tools for biomolecule synthesis and modification, 1st edn. Wiley, Hobeken, pp 125–159

    Chapter  Google Scholar 

  • Li X, Lam HY, Zhang Y, Chan CK (2010) Salicylaldehyde ester-induced chemoselective peptide ligations: enabling generation of natural peptidic linkages at the serine/threonine sites. Org Lett 12:1724–1727

    Article  CAS  PubMed  Google Scholar 

  • Lipshutz BH, Shin Y-J (2001) A new silyl linker for reverse-direction solid-phase peptide synthesis. Tetrahedron Lett 42:5629–5633

    Article  CAS  Google Scholar 

  • Liu L (2015) Protein ligation and total synthesis II. Top Curr Chem 363. Springer International Publishing, Switzerland. ISBN 978-3-319-19188-1

  • Liu C-F, Tam JP (1994a) Chemical ligation approach to form a peptide bond between unprotected peptide segments. Concept and model study. J Am Chem Soc 116:4149–4153

    Article  CAS  Google Scholar 

  • Liu C-F, Tam JP (1994b) Peptide segment ligation strategy without use of protecting groups. Proc Natl Acad Sci USA 91:6584–6588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loibl SF, Harpaz Z, Seitz O (2015) A Type of auxiliary for native chemical peptide ligation beyond cysteine and glycine junctions. Angew Chem Int Ed 54:15055–15059

    Article  CAS  Google Scholar 

  • Loibl SF, Harpaz Z, Zitterbart R, Seitz O (2016) Total chemical synthesis of proteins without HPLC purification. Chem Sci 7:6753–6759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malins LR, Cergol KM, Payne RJ (2013) Peptide ligation-desulfurization chemistry at arginine. ChemBioChem 14:559–563

    Article  CAS  PubMed  Google Scholar 

  • Malins LR, Cergol KM, Payne RJ (2014) Chemoselective sulfenylation and peptide ligation at tryptophan. Chem Sci 5:260–266

    Article  CAS  Google Scholar 

  • Marder O, Shvo Y, Albericio F (2002) HCTU and TCTU: new coupling reagents—development and industrial aspects. Chim Oggi 20:37–41

    CAS  Google Scholar 

  • Marinzi C, Offer J, Longhi R, Dawson PE (2004) An o-nitrobenzyl scaffold for peptide ligation: synthesis and applications. Bioorg Med Chem 12:2749–2757

    Article  CAS  PubMed  Google Scholar 

  • Matsueda GR, Stewart JM (1981) A p-methylbenzhydrylamine resin for improved solid-phase synthesis of peptide amides. Peptides 2:45–50

    Article  CAS  PubMed  Google Scholar 

  • McKay FC, Albertson NF (1957) New amine-masking groups for peptide synthesis. J Am Chem Soc 79:4686–4690

    Article  CAS  Google Scholar 

  • Meldal M (1992) Pega: a flow stable polyethylene glycol dimethyl acrylamide copolymer for solid phase synthesis. Tetrahedron Lett 33:3077–3080

    Article  CAS  Google Scholar 

  • Meli M, Morra G, Colombo G (2008) Investigating the mechanism of peptide aggregation: insights from mixed Monte Carlo-molecular dynamics simulations. Biophys J 94:4414–4426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mergler M, Dick F (2005) The aspartimide problem in Fmoc-based SPPS. Part III. J Pept Sci 11:650–657

    Article  CAS  PubMed  Google Scholar 

  • Mergler M, Tanner R, Gosteli O, Grogg P (1988) Peptide synthesis by a combination of solid-phase and solution methods I: a new very acid-labile anchor group for the solid phase synthesis of fully protected fragments. Tetrahedron Lett 29:4005–4008

    Article  CAS  Google Scholar 

  • Merrifield RB (1963) Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc 85:2149–2154

    Article  CAS  Google Scholar 

  • Merrifield RB (1964) Solid phase peptide synthesis. III. An improved synthesis of bradykinin. Biochemistry 3:1385–1390

    Article  CAS  PubMed  Google Scholar 

  • Merrifield RB, Gisin BF, Bach AN (1977) The limits of reaction of radioactive dicyclohexylcarbodiimide with amino groups during solid-phase peptide synthesis. J Org Chem 42:1291–1295

    Article  CAS  PubMed  Google Scholar 

  • Mezzato S, Schaffrath M, Unverzagt C (2005) An orthogonal double-linker resin facilitates the efficient solid-phase synthesis of complex-type N-Glycopeptide thioesters suitable for native chemical ligation. Angew Chem Int Ed 44:1650–1654

    Article  CAS  Google Scholar 

  • Mikos AG, Takoudis CG, Peppas NA (1987) Evidence of unequal vinyl group reactivity in copolymerization/crosslinking reactions of mono- and divinyl comonomers. Polymer 28:998–1004

    Article  CAS  Google Scholar 

  • Milton SCF, de Milton RCL (1990) An improved solid-phase synthesis of a difficult-sequence peptide using hexafluoro-2-propanol. Int J Pept Protein Res 36:193–196

    Article  CAS  PubMed  Google Scholar 

  • Miranda MTM, Liria CW, Remuzgo C (2011) Difficult peptides. In: Hughes AB (ed) Amino acids, peptides and proteins in organic chemistry, vol 3. Wiley-VCH Verlag GmbH & Co, Weinheim, pp 549–569

    Chapter  Google Scholar 

  • Mitchell AR, Erickson BW, Ryabtsev MN, Hodges RS, Merrifield RB (1976) tert-Butoxycarbonylaminoacyl-4-(oxymethyl)phenylacetamidomethyl-resin, a more acid-resistant support for solid-phase peptide synthesis. J Am Chem Soc 98:7357–7362

    Article  CAS  PubMed  Google Scholar 

  • Mitchell NJ, Kulkarni SS, Malins LR, Wang S, Payne RJ (2017a) One-pot ligation-oxidative deselenization at selenocysteine and selenocystine. Chem Eur J 23(4):946–952

    Article  CAS  PubMed  Google Scholar 

  • Mitchell NJ, Sayers J, Kulkarni SS, Clayton D, Goldys AM, Ripoll-Rozada J, Pereira PJB, Chan B, Radom L, Payne RJ (2017b) Accelerated protein synthesis via one-pot ligation-deselenization chemistry. Chem 2(5):703–715

    Article  CAS  Google Scholar 

  • Montalbetti CAGN, Falque V (2005) Amide bond formation and peptide coupling. Tetrahedron 61:10827–10852

    Article  CAS  Google Scholar 

  • Mühlberg M, Jaradat DMM, Kleineweischede R, Papp I, Dechtrirat D, Muth S, Broncel M, Hackenberger CPR (2010) Acidic and basic deprotection strategies of borane-protected phosphinothioesters for the traceless Staudinger ligation. Bioorg Med Chem 18(11):3679–3686

    Article  PubMed  CAS  Google Scholar 

  • Nilsson BL, Kiessling LL, Raines RT (2000) Staudinger ligation: a peptide from a thioester and azide. Org Lett 2:1939–1941

    Article  CAS  PubMed  Google Scholar 

  • Nilsson BL, Kiessling LL, Raines RT (2001) High-yielding Staudinger ligation of a phosphinothioester and azide to form a peptide. Org Lett 3:9–12

    Article  CAS  PubMed  Google Scholar 

  • Nishiuchi Y, Inut T, Nishio H, Bódi J, Kimura T, Tsuji FI, Sakakibara S (1998) Chemical synthesis of the precursor molecule of the Aequorea green fluorescent protein, subsequent folding, and development of fluorescence. Proc Natl Acad Sci USA 95:13549–13554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Offer J, Boddy CNC, Dawson PE (2002) Extending synthetic access to proteins with a removable acyl transfer auxiliary. J Am Chem Soc 124:4642–4646

    Article  CAS  PubMed  Google Scholar 

  • Ogunkoya AO, Pattabiraman VR, Bode JW (2012) Sequential α-ketoacid-hydroxylamine (KAHA) ligations: synthesis of C-terminal variants of the modifier protein UFM1. Angew Chem Int Ed 51:9693–9697

    Article  CAS  Google Scholar 

  • Okamoto M, Kimoto S, Oshima T, Kinomura Y, Kawasaki K, Yajima H (1967) The use of boron trifluoride etherate for debenzyloxycarbonylation of methionine-containing peptides by catalytic hydrogenolysis. Chem Pharm Bull 15(10):1618–1620

    CAS  PubMed  Google Scholar 

  • Paradís-Bas M, Tulla-Puche J, Albericio F (2016) The road to the synthesis of ‘‘difficult peptides’’. Chem Soc Rev 45:631–654

    Article  PubMed  Google Scholar 

  • Patil NA, Tailhades J, Karas JA, Separovic F, Wade JD, Mohammed Akhter Hossain MA (2016) A one-pot chemically cleavable bis-linker tether strategy for the synthesis of heterodimeric peptides. Angew Chem Int Ed 55:14552–14556

    Article  CAS  Google Scholar 

  • Pattabiraman VR, Bode JW (2011) Rethinking amide bond synthesis. Nature 480:471–479

    Article  CAS  PubMed  Google Scholar 

  • Pattabiraman VR, Ogunkoya AO, Bode JW (2012) Chemical protein synthesis by chemoselective α-ketoacid-hydroxylamine (KAHA) ligations with 5-oxaproline. Angew Chem Int Ed 51:5114–5118

    Article  CAS  Google Scholar 

  • Payne RJ, Wong C-H (2010) Advances in chemical ligation strategies for the synthesis of glycopeptides and glycoproteins. Chem Commun 46:21–43

    Article  CAS  Google Scholar 

  • Pentelute BL, Kent SBH (2007) Selective desulfurization of cysteine in the presence of Cys(Acm) in polypeptides obtained by native chemical ligation. Org Lett 9:687–690

    Article  CAS  PubMed  Google Scholar 

  • Petszulat H, Seitz O (2017) A fluorogenic native chemical ligation for assessing the role of distance in peptide-templated peptide ligation. Bioorg Med Chem. https://doi.org/10.1016/j.bmc.2017.08.007

    PubMed  Google Scholar 

  • Pietta PG, Marshall GR (1970) Amide protection and amide supports in solid-phase peptide synthesis. J Chem Soc D Chem Commun 11:650–651

    Article  Google Scholar 

  • Piontek C, Ring P, Harjes O, Heinlein C, Mezzato S, Lombana N, Pöhner C, Püttner M, Silva DV, Martin A, Schmid FX, Unverzagt C (2009a) Semisynthesis of a homogeneous glycoprotein enzyme: ribonuclease C: part 1. Angew Chem Int Ed 48:1936–1940

    Article  CAS  Google Scholar 

  • Piontek C, Silva DV, Heinlein C, Pöhner C, Mezzato S, Ring P, Martin A, Schmid FX, Unverzagt C (2009b) Semisynthesis of a homogeneous glycoprotein enzyme: ribonuclease C: part 2. Angew Chem Int Ed 48:1941–1945

    Article  CAS  Google Scholar 

  • Poulain RF, Tartara AL, Déprezb BP (2001) Parallel synthesis of 1,2,4-oxadiazoles from carboxylic acids using an improved, uronium-based, activation. Tetrahedron Lett 42:1495–1498

    Article  CAS  Google Scholar 

  • Pusterla I, Bode JW (2012) The mechanism of the α-ketoacid–hydroxylamine amide-forming ligation. Angew Chem Int Ed 51:513–516

    Article  CAS  Google Scholar 

  • Quaderer R, Hilvert D (2002) Selenocysteine-mediated backbone cyclization of unprotected peptides followed by alkylation, oxidative elimination or reduction of the selenol. Chem Commun 12:2620–2621

    Article  CAS  Google Scholar 

  • Quaderer R, Sewing A, Hilvert D (2001) Selenocysteine-mediated native chemical ligation. Helv Chim Acta 84:1197–1206

    Article  CAS  Google Scholar 

  • Remuzgo C, Andrade GFS, Temperini MLA, Miranda MTM (2009) Acanthoscurrin fragment 101–132: total synthesis at 60 °C of a novel difficult sequence. Biopolymers (Peptide Science) 92:65–75

    Article  CAS  Google Scholar 

  • Rink H (1987) Solid-phase synthesis of protected peptide fragments using a trialkoxy-diphenyl-methylester resin. Tetrahedron Lett 28:3787–3790

    Article  CAS  Google Scholar 

  • Rohrbacher F, Zwicky A, Bode JW (2017) Chemical synthesis of a homoserine-mutant of the antibacterial, head-to-tail cyclized protein AS-48 by α-ketoacid–hydroxylamine (KAHA) ligation. Chem Sci 8:4051–4055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakakibara S, Shimonishi Y, Kishida Y, Okada M, Sugihara H (1967) Use of anhydrous hydrogen fluoride in peptide synthesis. I. Behavior of various protective groups in anhydrous hydrogen fluoride. Bull Chem Soc Jpn 40:2164–2167

    Article  CAS  PubMed  Google Scholar 

  • Sarantakis D, Bicksler JJ (1997) Solid phase synthesis of sec-amides and removal from the polymeric support under mild conditions. Tetrahedron Lett 38:7325–7328

    Article  CAS  Google Scholar 

  • Sarin VK, Kent SBH, Merrifield RB (1980) Properties of swollen polymer networks. Solvation and swelling of peptide-containing resins in solid-phase peptide synthesis. J Am Chem Soc 102:5463–5470

    Article  CAS  Google Scholar 

  • Saxon E, Armstrong JI, Bertozzi CR (2000) A “Traceless” Staudinger ligation for the chemoselective synthesis of amide bonds. Org Lett 2:2141–2143

    Article  CAS  PubMed  Google Scholar 

  • Schnölzer M, Alewood P, Jones A, Alewood D, Kent SBH (1992) In situ neutralization in Boc-chemistry solid phase peptide synthesis: rapid, high yield assembly of difficult sequences. Int J Pept Protein Res 40:180–193

    Article  PubMed  Google Scholar 

  • Semenov AN, Gordeev KY (1995) A novel oxidation-labile linker for solid-phase peptide synthesis. Int J Pept Protein Res 45:303–304

    Article  CAS  PubMed  Google Scholar 

  • Serwa R, Wilkening I, del Signore G, Mühlberg M, Claußnitzer I, Weise C, Gerrits M, Hackenberger CPR (2009) Chemoselective Staudinger-phosphite reaction of azides for the phosphorylation of proteins. Angew Chem Int Ed 48:8234–8239

    Article  CAS  Google Scholar 

  • Shaikh SM, Nalawade SA, Doijad RC (2017) A review on combinatorial chemistry. RRJCHEM 6(2):14–26

    CAS  Google Scholar 

  • Shang S, Tan Z, Dong S, Danishefsky SJ (2011) An advance in proline ligation. J Am Chem Soc 133:10784–10786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheehan JC, Hess GP (1955) A new method of forming peptide bonds. J Am Chem Soc 77:1067–1068

    Article  CAS  Google Scholar 

  • Sheehan JC, Cruickshank PA, Boshart GL (1961) A convenient synthesis of water-soluble carbodiimides. J Org Chem 26:2525–2528

    Article  CAS  Google Scholar 

  • Sheppard RC, Williams BJ (1982) Acid-labile resin linkage agents for use in solid phase peptide synthesis. Int J Pept Protein Res 20:451–454

    Article  CAS  PubMed  Google Scholar 

  • Shin D-S, Kim D-H, Chung W-J, Lee Y-S (2005) Combinatorial solid phase peptide synthesis and bioassays. J Biochem Mol Biol 38(5):517–525

    CAS  PubMed  Google Scholar 

  • Sieber P (1987) A new acid-labile anchor group for the solid-phase synthesis of C-terminal peptide amides by the Fmoc method. Tetrahedron Lett 28:2107–2110

    Article  CAS  Google Scholar 

  • Siman P, Karthikeyan SV, Brik A (2012) Native chemical ligation at glutamine. Org Lett 14(6):1520–1523

    Article  CAS  PubMed  Google Scholar 

  • Smith M, Moffatt JG, Khorana HG (1958) Carbodiimides. VIII. Observations on the reactions of carbodiimides with acids and some new applications in the synthesis of phosphoric acid esters. J Am Chem Soc 80:6204–6212

    Article  CAS  Google Scholar 

  • Soural M, Hlaváč J, Krchňák V (2011) Linkers for solid-phase peptide synthesis. In: Hughes AB (ed) Amino acids, peptides and proteins in organic chemistry, vol 3. Wiley-VCH Verlag GmbH & Co, Weinheim, pp 273–317

    Chapter  Google Scholar 

  • Souza MP, Tavares MFM, Miranda MTM (2004) Racemization in stepwise solid-phase peptide synthesis at elevated temperatures. Tetrahedron 60:4671–4681

    Article  CAS  Google Scholar 

  • Stathopoulos P, Papas S, Kostidis S, Tsikaris V (2005) α- and β-Aspartyl peptide ester formation via aspartimide ring opening. J Pept Sci 11:658–664

    Article  CAS  PubMed  Google Scholar 

  • Stathopoulos P, Papas S, Pappas C, Mousis V, Sayyad N, Theodorou V, Tzakos AG, Tsikaris V (2013) Side reactions in the SPPS of Cys-containing peptides. Amino Acids 44:1357–1364

    Article  CAS  PubMed  Google Scholar 

  • Subirós-Funosas R, El-Faham A, Albericio F (2010) PyOxP and PyOxB: the Oxyma-based novel family of phosphonium salts. Org Biomol Chem 8:3665–3673

    Article  PubMed  CAS  Google Scholar 

  • Suresh Babu VV (2001) One hundred years of peptide chemistry. Resonance 6(10):68–75

    Article  Google Scholar 

  • Swayze EE (1997) Secondary amide-based linkers for solid phase organic synthesis. Tetrahedron Lett 38:8465–8468

    Article  CAS  Google Scholar 

  • Tam JP, Miao Z (1999) Stereospecific pseudoproline ligation of N-terminal serine, threonine, or cysteine-containing unprotected peptides. J Am Chem Soc 121:9013–9022

    Article  CAS  Google Scholar 

  • Tam JP, Xu J, Eom KD (2001) Methods and strategies of peptide ligation. Biopolymers 60:194–205

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi A, Sohma Y, Kimura M, Okada T, Ikeda K, Hayashi Y, Kimura T, Hirota S, Matsuzaki K, Kiso Y (2006) “Click Peptide” based on the “O-acyl isopeptide method”: control of Aβ1–42 production from a photo-triggered Aβ1–42 analogue. J Am Chem Soc 128:696–697

    Article  CAS  PubMed  Google Scholar 

  • Thaler A, Seebach D, Cardinaux F (1991) Lithium-salt effects in peptide synthesis. Part II. Improvement of degree of resin swelling and of efficiency of coupling in solid-phase synthesis. Helv Chim Acta 74:628–643

    Article  CAS  Google Scholar 

  • Thapa P, Zhang R-Y, Menon V, Bingham J-P (2014) Native chemical ligation: a boon to peptide chemistry. Molecules 19:14461–14483

    Article  PubMed  CAS  Google Scholar 

  • Thieriet N, Guibé F, Albericio F (2000) Solid-phase peptide synthesis in the reverse (N → C) direction. Org Lett 2(13):1815–1817

    Article  CAS  PubMed  Google Scholar 

  • Thompson RE, Chan B, Radom L, Jolliffe KA, Payne RJ (2013) Chemoselective peptide ligation-desulfurization at aspartate. Angew Chem Int Ed 52:9723–9727

    Article  CAS  Google Scholar 

  • Tiefenbrunn TK, Dawson PD (2010) Chemoselective ligation techniques: modern applications of time-honored chemistry. Biopolymers (Peptide Science) 94(1):95–106

    Article  CAS  Google Scholar 

  • Tornøe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67:3057–3064

    Article  PubMed  CAS  Google Scholar 

  • Tsuda Y, Okada Y (2011) Solution-phase peptide synthesis. In: Hughes AB (ed) Amino acids, peptides and proteins in organic chemistry, vol 3. Wiley-VCH Verlag GmbH & Co, Weinheim, pp 203–251

    Google Scholar 

  • Vaino AR, Janda KD (2000) Solid-phase organic synthesis: a critical understanding of the resin. J Comb Chem 2:579–596

    Article  CAS  PubMed  Google Scholar 

  • Valeur E, Bradley M (2009) Amide bond formation: beyond the myth of coupling reagents. Chem Soc Rev 38:606–631

    Article  CAS  PubMed  Google Scholar 

  • Wan Q, Danishefsky SJ (2007) Free-radical-based, specific desulfurization of cysteine: a powerful advance in the synthesis of polypeptides and glycopolypeptides. Angew Chem Int Ed 46:9248–9252

    Article  CAS  Google Scholar 

  • Wang S-S (1973) p-Alkoxybenzyl alcohol resin and p-alkoxybenzyloxycarbonylhydrazide resin for solid phase synthesis of protected peptide fragments. J Am Chem Soc 95:1328–1333

    Article  CAS  PubMed  Google Scholar 

  • Wang SS, Yang CC, Kulesha ID, Sonenberg M, Merrifield RB (1974) Solid phase synthesis of bovine pituitary growth hormone-(123–131) nonapeptide. Int J Pept Protein Res 6:103–109

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Dong S, Shieh J-H, Peguero E, Hendrickson R, Moore MAS, Danishefsky SJ (2013) Erythropoietin derived by chemical synthesis. Science 342:1357–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wieland T, Bokelmann E, Bauer L, Lang HU, Lau H (1953) Über Peptidsynthesen. 8. Mitteilung Bildung von S-haltigen Peptiden durch intramolekulare Wanderung von Aminoacylresten. Liebigs Ann Chem 583:129–149

    Article  CAS  Google Scholar 

  • Wieland T, Birr C, Flor F (1969) Über Peptidsynthesen, XLI Synthese von Antamanid mit der Merrifield-Technik. Liebigs Ann Chem 727:130–137

    Article  CAS  Google Scholar 

  • Wilson RM, Dong S, Wang P, Danishefsky SJ (2013) The winding pathway to erythropoietin along the chemistry–biology frontier: a success at last. Angew Chem Int Ed 52:7646–7665

    Article  CAS  Google Scholar 

  • Wöhr T, Mutter M (1995) Pseudo-prolines in peptide synthesis: direct insertion of serine and threonine derived oxazolidines in dipeptides. Tetrahedron Lett 36:3847–3848

    Article  Google Scholar 

  • Wong CTT, Li T, Lam HY, Zhang Y, Li X (2014) Realizing serine/threonine ligation: scope and limitations and mechanistic implication thereof. Front Chem 2:28

    PubMed  PubMed Central  Google Scholar 

  • Wucherpfennig TG, Pattabiraman VR, Limberg FRP, Ruiz-Rodríguez J, Bode JW (2014a) Traceless preparation of C-terminal α-ketoacids for chemical protein synthesis by α-ketoacid–hydroxylamine ligation: synthesis of SUMO2/3. Angew Chem Int Ed 53:12248–12252

    Article  CAS  Google Scholar 

  • Wucherpfennig TG, Rohrbacher F, Pattabiraman VR, Bode JW (2014b) Formation and rearrangement of homoserine depsipeptides and depsiproteins in the α-ketoacid–hydroxylamine ligation with 5-oxaproline. Angew Chem Int Ed 53:12244–12247

    Article  CAS  Google Scholar 

  • Xu C, Lam HY, Zhang Y, Li X (2013) Convergent synthesis of MUC1 glycopeptides via serine ligation. Chem Commun 49:6200–6202

    Article  CAS  Google Scholar 

  • Yamada S, Takeuchi Y (1971) A new method for the synthesis of peptides using the adducts of phosphorus compounds and tetrahalomethanes. Tetrahedron Lett 12:3595–3598

    Article  Google Scholar 

  • Yan LZ, Dawson PE (2001) Synthesis of peptides and proteins without cysteine residues by native chemical ligation combined with desulfurization. J Am Chem Soc 123:526–533

    Article  CAS  PubMed  Google Scholar 

  • Yang R, Pasunooti KK, Li F, Liu X-W, Liu C-F (2009) Dual native chemical ligation at lysine. J Am Chem Soc 131:13592–13593

    Article  CAS  PubMed  Google Scholar 

  • Yu H-M, Chen S-T, Wang K-T (1992) Enhanced coupling efficiency in solid-phase peptide synthesis by microwave irradiation. J Org Chem 57:4781–4784

    Article  CAS  Google Scholar 

  • Zalipsky S, Chang JL, Albericio F, Barany G (1994) Preparation and applications of polyethylene glycol-polystyrene graft resin supports for solid-phase peptide synthesis. React Polym 22:243–258

    Article  CAS  Google Scholar 

  • Zhang L, Tam JP (1999) Lactone and lactam library synthesis by silver ion-assisted orthogonal cyclization of unprotected peptides. J Am Chem Soc 121:3311–3320

    Article  CAS  Google Scholar 

  • Zhang Y, Xu C, Lam HY, Lee CL, Li X (2013) Protein chemical synthesis by serine and threonine ligation. Proc Natl Acad Sci USA 110:6657–6662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the financial support by Scientific Research Support Fund (SRSF) of Jordan within the Grant (Project MPH/2/03/2012). Furthermore, Dr. Michaela Mühlberg (Royal Society of Chemistry), Prof. Dr. Feras Alali (University of Qatar), and Eng. Rakeen Abuhanih (GMA Jordan) are thanked for careful proofreading and for the helpful discussions. The author also wishes to thank Prof. Dr. Christian P. R. Hackenberger (Leibniz—Institut für Molekulare Pharmakologie (FMP) and Humboldt Universität zu Berlin) for his valuable notes during the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da’san M. M. Jaradat.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Ethical standards

The manuscript does not contain any patient data or clinical studies.

Additional information

Handling Editor: J. D. Wade.

In memory of professors Theodor Curtius and Emil Fischer, the founders of peptide chemistry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaradat, D.M.M. Thirteen decades of peptide synthesis: key developments in solid phase peptide synthesis and amide bond formation utilized in peptide ligation. Amino Acids 50, 39–68 (2018). https://doi.org/10.1007/s00726-017-2516-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-017-2516-0

Keywords

Navigation