Skip to main content
Log in

Development and Evaluation of a New Fluorinated Double-Wall Carbon Nanotube HPLC Stationary Phase

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A novel column based on silica-containing immobilized fluorinated double-wall carbon nanotubes (F-DWCNTs) was developed. This F-DWCNT stationary phase was synthesized to combine the analytical performance of carbon nanotubes and the fluorine-based unique selectivity for polar compounds. First, the chromatographic support was coated with DWCNTs in a noncovalent way to preserve the sp2 internal nanotube structure. Second, the DWCNT silica particles were functionalized with fluorine atoms via a solution of Br2 and BrF3 at room temperature. This F-DWCNT stationary phase was applied for a variety of separations. The solute retention behaviour was particularly studied under isocratic conditions with a high fraction of ACN in the ACN/water (v/v) mobile phase. The retention factors of the solute molecule do not depend linearly on the ACN fraction, but follow a quadratic relationship. This fluorinated stationary phase separated compounds based upon a combination of hydrophobic and polar selective stationary phase interactions. This F-DWCNT appeared to work best when fluorinated or halogenated compounds were encountered. They have longer retention time, better selectivity and work well with high fraction of organic modifiers. This novel stationary phase could thus be a good choice for LC–MS experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Majors RE (1997) LCGC 15:1009–1015

    Google Scholar 

  2. Przbyciel M (2004) LCGC, LC Column Technology Supplement, June 2004, pp 26–29

  3. Tanaka N, Tokuda Y, Iwaguchi K, Araki M (1982) J Chromatogr 239:761–762

    Article  CAS  Google Scholar 

  4. Danielson N, Beaver L, Wangsa J (1991) J Chromatogr 544:187–199

    Article  CAS  Google Scholar 

  5. Kamiusuki T, Monde T, Yano K, Toko T, Konokahara T (1999) Chromatographia 49:649–656

    Article  CAS  Google Scholar 

  6. Hass A, Kohler J, Hemetsberger H (1981) Chromatographia 14:341–344

    Article  Google Scholar 

  7. Yamamoto FM, Rokushika S (2000) J Chromatogr A 898:141–151

  8. Euerby M, McKeown A, Petersson P (2003) J Sep Sci 26:295–306

    Article  CAS  Google Scholar 

  9. André C, Ismaili L, Millet J, Thomassin M, Guillaume YC (2003) Chromatographia 57:771–776

    Article  Google Scholar 

  10. Andre C, Ismaili L, Thomassin M, Truong TT, Refouvelet B, Guillaume YC (2003) Chromatographia 58:165–170

    CAS  Google Scholar 

  11. Jinno K, Nakamura H (1994) Chromatographia 39:285–293

    Article  CAS  Google Scholar 

  12. Tanaka N, Tetsuya T, Kimata K, Hosoya K, Araki T (1991) J Chromatogr 549:29–41

    Article  CAS  Google Scholar 

  13. Nilsson C, Nilsson S (2006) Electrophoresis 27:76–83

    Article  CAS  Google Scholar 

  14. Nilsson C, Birnbaum S, Nilsson S (2007) J Chromatogr A 1168:212–224

    Article  CAS  Google Scholar 

  15. Zhang Z, Wang Z, Liao Y, Liu H (2006) J Sep Sci 29:1872–1878

    Article  CAS  Google Scholar 

  16. Lijima SQ (1991) Nature 354:56–58

  17. Uchiyama H, Kaneko K, Oseki S (1987) J Chem Soc 85:4326–4333

    Google Scholar 

  18. Lijima SQ, Ichibashi T (1993) Nature 363:603–605

    Article  Google Scholar 

  19. Bethune DS, Klang CH, De Vries MS, Gorma G, Savoy R, Vasquez J, Beyers R (1993) Nature 363:605–607

    Article  CAS  Google Scholar 

  20. Li QL, Yuan DX (2003) J Chromatogr A 1003:203–209

    Article  CAS  Google Scholar 

  21. Saridara C, Mitra S (2005) Anal Chem 77:7094–7097

    Article  CAS  Google Scholar 

  22. Karwa M, Mitra S (2006) Anal Chem 78:2064–2070

    Article  CAS  Google Scholar 

  23. Stadermann M, McBrady AD, Dick B, Reid VR, Noy A, Synovec RE, Bakajin O (2006) Anal Chem 78:5639–5644

    Article  CAS  Google Scholar 

  24. Yuan LM, Ren RN, Li L, Ai P, Yan ZH, Zi Z, Li Y (2006) Anal Chem 78:6384–6390

    Article  CAS  Google Scholar 

  25. Zhao L, Ai P, Duan AH, Yuan LM (2011) Anal Bioanal Chem 399:143–147

    Article  CAS  Google Scholar 

  26. Speltini A, Merli D, Quartarone E, Profulo A (2010) J Chromatogr A 1217:2918–2924

    Article  CAS  Google Scholar 

  27. Li Y, Chen Y, Xiang R, Ciuparu D, Pfefferle LD, Horvath C, Wilkins JA (2005) Anal Chem 77:1398–1406

    Article  CAS  Google Scholar 

  28. Andre C, Gharbi T, Guillaume YC (2009) J Sep Sci 32:1757–1764

    Article  CAS  Google Scholar 

  29. Andre C, Aljhni R, Gharbi T, Guillaume YC (2011) J Sep Sci 34:1221–1227

    Article  CAS  Google Scholar 

  30. Menna E, Della Negra F, Prato M, Tagmatarchis N, Ciogli A, Gasparrrini F, Misita D, Villani C (2006) Carbon 44:1609–1613

    Article  CAS  Google Scholar 

  31. Chang YX, Zhou LL, Li GX, Li L, Yuan LM (2007) J Liquid Chromatogr Relat Technol 30:2953–2958

    Article  CAS  Google Scholar 

  32. Kwon SH, Park JH (2006) J Sep Sci 29:945–952

    Article  CAS  Google Scholar 

  33. Chang YX, Ren CX, Ruan Q, Yuan LM (2007) Chem Res Chin Univ 23:646–649

    Article  CAS  Google Scholar 

  34. Chambers SD, Svec F, Frechet JMJ (2011) J Chromatogr A 1218:2546–2552

    Article  CAS  Google Scholar 

  35. Andre C, Agiovlasileti D, Guillaume YC (2011) Talanta 85:2703–2706

    Article  CAS  Google Scholar 

  36. Xu Y, Li SFY (2006) Electrophoresis 27:4025–4048

    Article  CAS  Google Scholar 

  37. Moliner-Martinez Y, Cardenas S, Valcarcel M (2007) Electrophoresis 28:2573–2579

    Article  CAS  Google Scholar 

  38. Jimenez-Soto JM, Moliner-Martinez Y, Cardenas S, Valcarcel M (2010) Electrophoresis 31:1681–1688

    Article  CAS  Google Scholar 

  39. Suarez B, Simonet BM, Cardenas S, Valcarcel M (2007) Electrophoresis 28:1714–1722

    Article  CAS  Google Scholar 

  40. Sombra L, Moliner-Martinez Y, Cardenas S, Valcarcel M (2008) Electrophoresis 29:3850–3857

    Article  CAS  Google Scholar 

  41. Luong JHT, Bouvrette P, Liu Y, Yang DQ, Sacher E (2005) J Chromatogr A 1074:187–194

    Article  CAS  Google Scholar 

  42. Chen JL (2010) J Chromatogr A 1217:715–721

    Article  CAS  Google Scholar 

  43. Bulusheva LG, Fedoseeva YV, Okotrub AV, Flahaut E, Asanov IP, Koroteev VO, Yaya A, Chuvilin AL, Felten A, Van Lier G, Vyalikh DV (2010) Chem Matter 22:4197–4203

    Article  CAS  Google Scholar 

  44. Fujigaya T, Yoo JT, Nakashima N (2011) Carbon 49:468–476

    Article  CAS  Google Scholar 

  45. Siouffi AM (2006) J Chromatogr A 1126:86–94

    Article  CAS  Google Scholar 

  46. Cabrear K, Wieland G, Lubda D, Nakanishi K, Soga N, Minaguchi H et al (1998) Trends. Anal Chem 17:50–53

    Google Scholar 

  47. Kele M, Guiochon G (2002) J Chromatogr A 960:19–49

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Guillaume.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

André, C., Aljhni, R., Lethier, L. et al. Development and Evaluation of a New Fluorinated Double-Wall Carbon Nanotube HPLC Stationary Phase. Chromatographia 77, 1257–1265 (2014). https://doi.org/10.1007/s10337-014-2736-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-014-2736-3

Keywords

Navigation