Skip to main content
Log in

Rapid biological synthesis of platinum nanoparticles using Ocimum sanctum for water electrolysis applications

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The leaf extract of Ocimum sanctum was used as a reducing agent for the synthesis of platinum nanoparticles from an aqueous chloroplatinic acid (H2PtCl6·6H2O). A greater conversion of platinum ions to nanoparticles was achieved by employing a tulsi leaf broth with a reaction temperature of 100 °C. Energy-dispersive absorption X-ray spectroscopy confirmed the platinum particles as major constituent in the reduction process. It is evident from scanning electron microscopy that the reduced platinum particles were found as aggregates with irregular shape. Fourier-transform infrared spectroscopy revealed that the compounds such as ascorbic acid, gallic acid, terpenoids, certain proteins and amino acids act as reducing agents for platinum ions reduction. X-ray diffraction spectroscopy suggested the associated forms of platinum with other molecules and the average particle size of platinum nanoparticle was 23 nm, calculated using Scherer equation. The reduced platinum showed similar hydrogen evolution potential and catalytic activity like pure platinum using linear scan voltammetry. This environmentally friendly method of biological platinum nanoparticles production increases the rates of synthesis faster which can potentially be used in water electrolysis applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Govindaraju K, Tamilselvan S, Kiruthiga V, Singaravelu G (2010) J Biopest 3:394–399

    CAS  Google Scholar 

  2. Nanda A, Saravanan M (2009) Nanomedicine 5:452–456

    Article  CAS  Google Scholar 

  3. Garima S, Riju B, Kunal K, Ashish RS, Rajendra PS (2010) J Nanopart Res 1–8. doi:10.1007/s11051-010-0193-y

  4. Riddin T, Govender Y, Whiteley CG (2009) Enzym Microb Technol 45:267–273

    Article  CAS  Google Scholar 

  5. Yageshni G, Tamsyn R, Mariekie G, Chris GW (2009) Biotechnol Lett 31:95–100

    Article  Google Scholar 

  6. Yasuhiro K, Kaori O, Norizon S, Toshiyuki N, Shinsuke N, Hajime H et al (2007) J Biotechnol 128:648–653

    Article  Google Scholar 

  7. Gardea TJL, Parsons JG, Gomez E, Peralta VJ, Troiani HE, Santiago P et al (2002) Nano Lett 2:397–401

    Article  Google Scholar 

  8. Jae YS, Eun YK, Beom SK (2010) Bioprocess Biosyst Eng 33:159–164

    Article  Google Scholar 

  9. Vineet K, Sudesh KY (2008) J Chem Technol Biotechnol 84:151–157

    Google Scholar 

  10. Shankar M, Bijay RM, Sushil CM (2009) Indian J Physiol Pharmacol 53:291–306

    Google Scholar 

  11. Wang M, Chen Q, Jiang C, Yang D, Liu X, Xu S (2007) Colloids Surf A Physicochem Eng Asp 30173–30179

  12. Sondi I, Goia DV, Matijevic EJ (2008) Colloid Interface Sci 260:75–78

    Article  Google Scholar 

  13. Liu Z, Ling XY, Su X, Lee JY (2004) J Phys Chem B 108:8234–8240

    Article  CAS  Google Scholar 

  14. Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X et al (2007) Nanotechnology 18:105104–105114

    Article  Google Scholar 

  15. Rai A, Chaudhary M, Ahmad A, Bhargava S, Sastry M (2007) Mater Res Bull 42:1212–1220

    Article  CAS  Google Scholar 

  16. Klug HP, Alexander LE (1974) X-ray diffraction procedures for polycrystalline and amorphous materials. Wiley, New York

    Google Scholar 

  17. Naheed A, Seema S, Singh VN, Shamsi SF, Anjum F, Mehta BR (2010) Biotechnol Res Int 10:1–8

    Google Scholar 

  18. Thirumurugan A, Jiflin GJ, Rajagomathi G, Neethu Anns T, Ramachandran S, Jaiganesh R (2010) Int J Biological Technol 1:75–77

    CAS  Google Scholar 

  19. Sastry M, Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan M et al (2010) Colloids Surf B Biointerf 28:313–318

    Google Scholar 

Download references

Acknowledgments

The authors would like to express their thanks to Instrumentation Division of CECRI for analyzing the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Maruthamuthu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soundarrajan, C., Sankari, A., Dhandapani, P. et al. Rapid biological synthesis of platinum nanoparticles using Ocimum sanctum for water electrolysis applications. Bioprocess Biosyst Eng 35, 827–833 (2012). https://doi.org/10.1007/s00449-011-0666-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-011-0666-0

Keywords

Navigation