Skip to main content
Log in

Genomic and physiological analyses reveal that extremely thermophilic Caldicellulosiruptor changbaiensis deploys uncommon cellulose attachment mechanisms

  • Biocatalysis - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The genus Caldicellulosiruptor is comprised of extremely thermophilic, heterotrophic anaerobes that degrade plant biomass using modular, multifunctional enzymes. Prior pangenome analyses determined that this genus is genetically diverse, with the current pangenome remaining open, meaning that new genes are expected with each additional genome sequence added. Given the high biodiversity observed among the genus Caldicellulosiruptor, we have sequenced and added a 14th species, Caldicellulosiruptor changbaiensis, to the pangenome. The pangenome now includes 3791 ortholog clusters, 120 of which are unique to C. changbaiensis and may be involved in plant biomass degradation. Comparisons between C. changbaiensis and Caldicellulosiruptor bescii on the basis of growth kinetics, cellulose solubilization and cell attachment to polysaccharides highlighted physiological differences between the two species which are supported by their respective gene inventories. Most significantly, these comparisons indicated that C. changbaiensis possesses uncommon cellulose attachment mechanisms not observed among the other strongly cellulolytic members of the genus Caldicellulosiruptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Angiuoli SV, Salzberg SL (2011) Mugsy: fast multiple alignment of closely related whole genomes. Bioinformatics 27:334–342. https://doi.org/10.1093/bioinformatics/btq665

    Article  CAS  PubMed  Google Scholar 

  3. Artzi L, Bayer EA, Morais S (2017) Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides. Nat Rev Microbiol 15:83–95. https://doi.org/10.1038/nrmicro.2016.164

    Article  CAS  PubMed  Google Scholar 

  4. Bing W, Wang H, Zheng B, Zhang F, Zhu G, Feng Y, Zhang Z (2015) Caldicellulosiruptor changbaiensis sp. nov., a cellulolytic and hydrogen-producing bacterium from a hot spring. Int J Syst Evol Microbiol 65:293–297. https://doi.org/10.1099/ijs.0.065441-0

    Article  CAS  PubMed  Google Scholar 

  5. Blumer-Schuette SE, Alahuhta M, Conway JM, Lee LL, Zurawski JV, Giannone RJ, Hettich RL, Lunin VV, Himmel ME, Kelly RM (2015) Discrete and structurally unique proteins (tāpirins) mediate attachment of extremely thermophilic Caldicellulosiruptor species to cellulose. J Biol Chem 290:10645–10656. https://doi.org/10.1074/jbc.M115.641480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Blumer-Schuette SE, Giannone RJ, Zurawski JV, Ozdemir I, Ma Q, Yin Y, Xu Y, Kataeva I, Poole FL 2nd, Adams MW, Hamilton-Brehm SD, Elkins JG, Larimer FW, Land ML, Hauser LJ, Cottingham RW, Hettich RL, Kelly RM (2012) Caldicellulosiruptor core and pangenomes reveal determinants for noncellulosomal thermophilic deconstruction of plant biomass. J Bacteriol 194:4015–4028. https://doi.org/10.1128/JB.00266-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Blumer-Schuette SE, Lewis DL, Kelly RM (2010) Phylogenetic, microbiological, and glycoside hydrolase diversities within the extremely thermophilic, plant biomass-degrading genus Caldicellulosiruptor. Appl Environ Microbiol 76:8084–8092. https://doi.org/10.1128/AEM.01400-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Blumer-Schuette SE, Ozdemir I, Mistry D, Lucas S, Lapidus A, Cheng JF, Goodwin LA, Pitluck S, Land ML, Hauser LJ, Woyke T, Mikhailova N, Pati A, Kyrpides NC, Ivanova N, Detter JC, Walston-Davenport K, Han S, Adams MW, Kelly RM (2011) Complete genome sequences for the anaerobic, extremely thermophilic plant biomass-degrading bacteria Caldicellulosiruptor hydrothermalis, Caldicellulosiruptor kristjanssonii, Caldicellulosiruptor kronotskyensis, Caldicellulosiruptor owensensis, and Caldicellulosiruptor lactoaceticus. J Bacteriol 193:1483–1484. https://doi.org/10.1128/JB.01515-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brunecky R, Alahuhta M, Xu Q, Donohoe BS, Crowley MF, Kataeva IA, Yang SJ, Resch MG, Adams MW, Lunin VV, Himmel ME, Bomble YJ (2013) Revealing nature’s cellulase diversity: the digestion mechanism of Caldicellulosiruptor bescii CelA. Science 342:1513–1516. https://doi.org/10.1126/science.1244273

    Article  CAS  PubMed  Google Scholar 

  10. Brunecky R, Chung D, Sarai NS, Hengge N, Russell JF, Young J, Mittal A, Pason P, Wall TV, Michener W, Shollenberger T, Westpheling J, Himmel ME, Bomble YJ (2018) High activity CAZyme cassette for improving biomass degradation in thermophiles. Biotechnol Biofuel 11:22. https://doi.org/10.1186/s13068-018-1014-2

    Article  CAS  Google Scholar 

  11. Brunecky R, Donohoe BS, Yarbrough JM, Mittal A, Scott BR, Ding H, Taylor Ii LE, Russell JF, Chung D, Westpheling J, Teter SA, Himmel ME, Bomble YJ (2017) The multi domain Caldicellulosiruptor bescii CelA cellulase excels at the hydrolysis of crystalline cellulose. Sci Rep 7:9622. https://doi.org/10.1038/s41598-017-08985-w

    Article  PubMed  PubMed Central  Google Scholar 

  12. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinform 10:421. https://doi.org/10.1186/1471-2105-10-421

    Article  CAS  Google Scholar 

  13. Cha M, Chung D, Elkins JG, Guss AM, Westpheling J (2013) Metabolic engineering of Caldicellulosiruptor bescii yields increased hydrogen production from lignocellulosic biomass. Biotechnol Biofuel 6:1–8. https://doi.org/10.1186/1754-6834-6-85

    Article  CAS  Google Scholar 

  14. Chu Y, Tu T, Penttinen L, Xue X, Wang X, Yi Z, Gong L, Rouvinen J, Luo H, Hakulinen N, Yao B, Su X (2017) Insights into the roles of non-catalytic residues in the active site of a GH10 xylanase with activity on cellulose. J Biol Chem 292:19315–19327. https://doi.org/10.1074/jbc.M117.807768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chung D, Cha M, Farkas J, Westpheling J (2013) Construction of a stable replicating shuttle vector for Caldicellulosiruptor species: use for extending genetic methodologies to other members of this genus. PLoS One 8:e62881. https://doi.org/10.1371/journal.pone.0062881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chung D, Cha M, Guss AM, Westpheling J (2014) Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1402210111

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chung D, Cha M, Snyder EN, Elkins JG, Guss AM, Westpheling J (2015) Cellulosic ethanol production via consolidated bioprocessing at 75 & #xB0;C by engineered Caldicellulosiruptor bescii. Biotechnol Biofuel 8:163. https://doi.org/10.1186/s13068-015-0346-4

    Article  CAS  Google Scholar 

  18. Chung D, Farkas J, Huddleston JR, Olivar E, Westpheling J (2012) Methylation by a unique α-class N4-cytosine methyltransferase Is required for DNA transformation of Caldicellulosiruptor bescii DSM6725. PLoS One 7:e43844. https://doi.org/10.1371/journal.pone.0043844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chung D, Farkas J, Westpheling J (2013) Detection of a novel active transposable element in Caldicellulosiruptor hydrothermalis and a new search for elements in this genus. J Ind Microbiol Biotechnol 40:517–521. https://doi.org/10.1007/s10295-013-1244-z

    Article  CAS  PubMed  Google Scholar 

  20. Chung D, Farkas J, Westpheling J (2013) Overcoming restriction as a barrier to DNA transformation in Caldicellulosiruptor species results in efficient marker replacement. Biotechnol Biofuel 6:1–9. https://doi.org/10.1186/1754-6834-6-82

    Article  CAS  Google Scholar 

  21. Chung D, Pattathil S, Biswal AK, Hahn MG, Mohnen D, Westpheling J (2014) Deletion of a gene cluster encoding pectin degrading enzymes in Caldicellulosiruptor bescii reveals an important role for pectin in plant biomass recalcitrance. Biotechnol Biofuel 7:147. https://doi.org/10.1186/s13068-014-0147-1

    Article  CAS  Google Scholar 

  22. Chung D, Young J, Bomble YJ, Vander Wall TA, Groom J, Himmel ME, Westpheling J (2015) Homologous expression of the Caldicellulosiruptor bescii CelA reveals that the extracellular protein is glycosylated. PLoS One 10:e0119508. https://doi.org/10.1371/journal.pone.0119508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chung D, Young J, Cha M, Brunecky R, Bomble YJ, Himmel ME, Westpheling J (2015) Expression of the Acidothermus cellulolyticus E1 endoglucanase in Caldicellulosiruptor bescii enhances its ability to deconstruct crystalline cellulose. Biotechnol Biofuel 8:113. https://doi.org/10.1186/s13068-015-0296-x

    Article  CAS  Google Scholar 

  24. Chung M, Munro JB, Tettelin H, Dunning Hotopp JC (2018) Using core genome alignments to assign bacterial species. mSystems. https://doi.org/10.1128/msystems.00236-18

    Article  PubMed  PubMed Central  Google Scholar 

  25. Contreras-Moreira B, Vinuesa P (2013) GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl Environ Microbiol 79:7696–7701. https://doi.org/10.1128/AEM.02411-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Conway JM, Crosby JR, Hren AP, Southerland RT, Lee LL, Lunin VV, Alahuhta P, Himmel ME, Bomble YJ, Adams MWW, Kelly RM (2018) Novel multidomain, multifunctional glycoside hydrolases from highly lignocellulolytic Caldicellulosiruptor species. AIChE J 64:4218–4228. https://doi.org/10.1002/aic.16354

    Article  CAS  Google Scholar 

  27. Conway JM, Crosby JR, McKinley BS, Seals NL, Adams MWW, Kelly RM (2018) Parsing in vivo and in vitro contributions to microcrystalline cellulose hydrolysis by multidomain glycoside hydrolases in the Caldicellulosiruptor bescii secretome. Biotechnol Bioeng. https://doi.org/10.1002/bit.26773

    Article  PubMed  Google Scholar 

  28. Conway JM, McKinley BS, Seals NL, Hernandez D, Khatibi PA, Poudel S, Giannone RJ, Hettich RL, Williams-Rhaesa AM, Lipscomb GL, Adams MWW, Kelly RM (2017) Functional analysis of the glucan degradation locus in Caldicellulosiruptor bescii reveals essential roles of component glycoside hydrolases in plant biomass deconstruction. Appl Environ Microbiol 83:e01828-01817. https://doi.org/10.1128/AEM.01828-17

    Article  Google Scholar 

  29. Dam P, Kataeva I, Yang S-J, Zhou F, Yin Y, Chou W, Poole FL, Westpheling J, Hettich R, Giannone R, Lewis DL, Kelly R, Gilbert HJ, Henrissat B, Xu Y, Adams MWW (2011) Insights into plant biomass conversion from the genome of the anaerobic thermophilic bacterium Caldicellulosiruptor bescii DSM 6725. Nucleic Acids Res 39:3240–3254. https://doi.org/10.1093/nar/gkq1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Darling AE, Mau B, Perna NT (2010) progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 5:e11147. https://doi.org/10.1371/journal.pone.0011147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Elkins JG, Lochner A, Hamilton-Brehm SD, Davenport KW, Podar M, Brown SD, Land ML, Hauser LJ, Klingeman DM, Raman B, Goodwin LA, Tapia R, Meincke LJ, Detter JC, Bruce DC, Han CS, Palumbo AV, Cottingham RW, Keller M, Graham DE (2010) Complete genome sequence of the cellulolytic thermophile Caldicellulosiruptor obsidiansis OB47T. J Bacteriol 192:6099–6100. https://doi.org/10.1128/JB.00950-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Farkas J, Chung D, Cha M, Copeland J, Grayeski P, Westpheling J (2013) Improved growth media and culture techniques for genetic analysis and assessment of biomass utilization by Caldicellulosiruptor bescii. J Ind Microbiol Biotechnol 40:1–9. https://doi.org/10.1007/s10295-012-1202-1

    Article  CAS  Google Scholar 

  33. Fonknechten N, Chaussonnerie S, Tricot S, Lajus A, Andreesen JR, Perchat N, Pelletier E, Gouyvenoux M, Barbe V, Salanoubat M, Le Paslier D, Weissenbach J, Cohen GN, Kreimeyer A (2010) Clostridium sticklandii, a specialist in amino acid degradation: revisiting its metabolism through its genome sequence. BMC Genom 11:555. https://doi.org/10.1186/1471-2164-11-555

    Article  CAS  Google Scholar 

  34. Gibbs MD, Saul DJ, Lüthi E, Bergquist PL (1992) The beta-mannanase from “Caldocellum saccharolyticum” is part of a multidomain enzyme. Appl Environ Microbiol 58:3864–3867

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91. https://doi.org/10.1099/ijs.0.64483-0

    Article  CAS  PubMed  Google Scholar 

  36. Hobbie JE, Daley RJ, Jasper S (1977) Use of nucleopore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol 33:1225–1228

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kahn A, Moraïs S, Galanopoulou AP, Chung D, Sarai NS, Hengge N, Hatzinikolaou DG, Himmel ME, Bomble YJ, Bayer EA (2019) Creation of a functional hyperthermostable designer cellulosome. Biotechnol Biofuel 12:44. https://doi.org/10.1186/s13068-019-1386-y

    Article  Google Scholar 

  38. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14:587–589. https://doi.org/10.1038/nmeth.4285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim S-K, Chung D, Himmel ME, Bomble YJ, Westpheling J (2016) Heterologous expression of family 10 xylanases from Acidothermus cellulolyticus enhances the exoproteome of Caldicellulosiruptor bescii and growth on xylan substrates. Biotechnol Biofuel. https://doi.org/10.1186/s13068-016-0588-9

    Article  Google Scholar 

  40. Kim S-K, Chung D, Himmel ME, Bomble YJ, Westpheling J (2017) Engineering the N-terminal end of CelA results in improved performance and growth of Caldicellulosiruptor bescii on crystalline cellulose. Biotechnol Bioeng 114:945–950. https://doi.org/10.1002/bit.26242

    Article  CAS  PubMed  Google Scholar 

  41. Kim S-K, Chung D, Himmel ME, Bomble YJ, Westpheling J (2017) Heterologous expression of a β-d-glucosidase in Caldicellulosiruptor bescii has a surprisingly modest effect on the activity of the exoproteome and growth on crystalline cellulose. J Ind Microbiol Biotechnol 44:1643–1651. https://doi.org/10.1007/s10295-017-1982-4

    Article  CAS  PubMed  Google Scholar 

  42. Kim S-K, Chung D, Himmel ME, Bomble YJ, Westpheling J (2017) In vivo synergistic activity of a CAZyme cassette from Acidothermus cellulolyticus significantly improves the cellulolytic activity of the C. bescii exoproteome. Biotechnol Bioeng 114:2474–2480. https://doi.org/10.1002/bit.26366

    Article  CAS  PubMed  Google Scholar 

  43. Kim S-K, Chung D, Himmel ME, Bomble YJ, Westpheling J (2019) Heterologous co-expression of two β-glucanases and a cellobiose phosphorylase resulted in a significant increase in the cellulolytic activity of the Caldicellulosiruptor bescii exoproteome. J Ind Microbiol Biotechnol. https://doi.org/10.1007/s10295-019-02150-0

    Article  PubMed  Google Scholar 

  44. Kim S-K, Himmel ME, Bomble YJ, Westpheling J (2018) Expression of a cellobiose phosphorylase from Thermotoga maritima in Caldicellulosiruptor bescii improves the phosphorolytic pathway and results in a dramatic increase in cellulolytic activity. Appl Environ Microbiol 84:e02348-02317. https://doi.org/10.1128/AEM.02348-17

    Article  Google Scholar 

  45. Kristensen DM, Kannan L, Coleman MK, Wolf YI, Sorokin A, Koonin EV, Mushegian A (2010) A low-polynomial algorithm for assembling clusters of orthologous groups from intergenomic symmetric best matches. Bioinformatics 26:1481–1487. https://doi.org/10.1093/bioinformatics/btq229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee LL, Blumer-Schuette SE, Izquierdo JA, Zurawski JV, Loder AJ, Conway JM, Elkins JG, Podar M, Clum A, Jones PC, Piatek MJ, Weighill DA, Jacobson DA, Adams MWW, Kelly RM (2018) Genus-wide assessment of lignocellulose utilization in the extremely thermophilic genus Caldicellulosiruptor by genomic, pangenomic, and metagenomic analyses. Appl Environ Microbiol. https://doi.org/10.1128/aem.02694-17

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lee LL, Hart WS, Lunin VV, Alahuhta M, Bomble YJ, Himmel ME, Blumer-Schuette SE, Adams MWW, Kelly RM (2019) Comparative biochemical and structural analysis of novel cellulose binding proteins (tāpirins) from extremely thermophilic Caldicellulosiruptor species. Appl Environ Microbiol 85:e01983-01918. https://doi.org/10.1128/AEM.01983-18

    Article  Google Scholar 

  48. Lee LL, Izquierdo JA, Blumer-Schuette SE, Zurawski JV, Conway JM, Cottingham RW, Huntemann M, Copeland A, Chen IM, Kyrpides N, Markowitz V, Palaniappan K, Ivanova N, Mikhailova N, Ovchinnikova G, Andersen E, Pati A, Stamatis D, Reddy TB, Shapiro N, Nordberg HP, Cantor MN, Hua SX, Woyke T, Kelly RM (2015) Complete genome sequences of Caldicellulosiruptor sp. strain Rt8.B8, Caldicellulosiruptor sp. strain Wai35.B1, and “Thermoanaerobacter cellulolyticus”. Genome Announc. https://doi.org/10.1128/genomea.00440-15

    Article  PubMed  PubMed Central  Google Scholar 

  49. Letunic I, Bork P (2019) Interactive tree of life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 47:W256–W259. https://doi.org/10.1093/nar/gkz239

    Article  PubMed  PubMed Central  Google Scholar 

  50. Li L, Stoeckert CJ Jr, Roos DS (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13:2178–2189. https://doi.org/10.1101/gr.1224503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60. https://doi.org/10.1186/1471-2105-14-60

    Article  Google Scholar 

  52. Mendoza C, Blumer-Schuette SE (2019) Complete genome sequence of Caldicellulosiruptor changbaiensis CBS-Z, an extremely thermophilic, cellulolytic bacterium isolated from a hot spring in China. Microbiol Resour Announc. https://doi.org/10.1128/mra.00021-19

    Article  PubMed  PubMed Central  Google Scholar 

  53. Meng DD, Ying Y, Chen XH, Lu M, Ning K, Wang LS, Li FL (2015) Distinct roles for carbohydrate-binding modules of glycoside hydrolase 10 (GH10) and GH11 xylanases from Caldicellulosiruptor sp. strain F32 in thermostability and catalytic efficiency. Appl Environ Microbiol 81:2006–2014. https://doi.org/10.1128/AEM.03677-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Minh BQ, Nguyen MA, von Haeseler A (2013) Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol 30:1188–1195. https://doi.org/10.1093/molbev/mst024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mukherjee S, Seshadri R, Varghese NJ, Eloe-Fadrosh EA, Meier-Kolthoff JP, Goker M, Coates RC, Hadjithomas M, Pavlopoulos GA, Paez-Espino D, Yoshikuni Y, Visel A, Whitman WB, Garrity GM, Eisen JA, Hugenholtz P, Pati A, Ivanova NN, Woyke T, Klenk HP, Kyrpides NC (2017) 1,003 reference genomes of bacterial and archaeal isolates expand coverage of the tree of life. Nat Biotechnol 35:676. https://doi.org/10.1038/nbt.3886

    Article  CAS  PubMed  Google Scholar 

  56. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274. https://doi.org/10.1093/molbev/msu300

    Article  CAS  PubMed  Google Scholar 

  57. Numan MT, Bhosle NB (2006) Alpha-L-arabinofuranosidases: the potential applications in biotechnology. J Ind Microbiol Biotechnol 33:247–260. https://doi.org/10.1007/s10295-005-0072-1

    Article  CAS  PubMed  Google Scholar 

  58. Park JI, Kent MS, Datta S, Holmes BM, Huang Z, Simmons BA, Sale KL, Sapra R (2011) Enzymatic hydrolysis of cellulose by the cellobiohydrolase domain of CelB from the hyperthermophilic bacterium Caldicellulosiruptor saccharolyticus. Bioresour Technol 102:5988–5994. https://doi.org/10.1016/j.biortech.2011.02.036

    Article  CAS  PubMed  Google Scholar 

  59. Park JI, Steen EJ, Burd H, Evans SS, Redding-Johnson AM, Batth T, Benke PI, D’Haeseleer P, Sun N, Sale KL, Keasling JD, Lee TS, Petzold CJ, Mukhopadhyay A, Singer SW, Simmons BA, Gladden JM (2012) A thermophilic ionic liquid-tolerant cellulase cocktail for the production of cellulosic biofuels. PLoS One 7:e37010. https://doi.org/10.1371/journal.pone.0037010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. R Core T (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  61. Reynolds PH, Sissons CH, Daniel RM, Morgan HW (1986) Comparison of cellulolytic activities in clostridium thermocellum and three thermophilic, cellulolytic anaerobes. Appl Environ Microbiol 51:12–17

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Richter M, Rossello-Mora R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131. https://doi.org/10.1073/pnas.0906412106

    Article  PubMed  PubMed Central  Google Scholar 

  63. Rissman AI, Mau B, Biehl BS, Darling AE, Glasner JD, Perna NT (2009) Reordering contigs of draft genomes using the Mauve aligner. Bioinformatics 25:2071–2073. https://doi.org/10.1093/bioinformatics/btp356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sander K, Chung D, Hyatt D, Westpheling J, Klingeman DM, Rodriguez M, Engle NL, Tschaplinski TJ, Davison BH, Brown SD (2019) Rex in Caldicellulosiruptor bescii: novel regulon members and its effect on the production of ethanol and overflow metabolites. MicrobiologyOpen. https://doi.org/10.1002/mbo3.639

    Article  PubMed  Google Scholar 

  65. Saul DJ, Williams LC, Grayling RA, Chamley LW, Love DR, Bergquist PL (1990) celB, a gene coding for a bifunctional cellulase from the extreme thermophile “Caldocellum saccharolyticum”. Appl Environ Microbiol 56:3117–3124

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. https://doi.org/10.1128/AEM.01541-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Segata N, Bornigen D, Morgan XC, Huttenhower C (2013) PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun 4:2304. https://doi.org/10.1038/ncomms3304

    Article  CAS  PubMed  Google Scholar 

  68. Sissons CH, Sharrock KR, Daniel RM, Morgan HW (1987) Isolation of cellulolytic anaerobic extreme thermophiles from New Zealand thermal sites. Appl Environ Microbiol 53:832–838

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Smith SP, Bayer EA, Czjzek M (2017) Continually emerging mechanistic complexity of the multi-enzyme cellulosome complex. Curr Opin Struct Biol 44:151–160. https://doi.org/10.1016/j.sbi.2017.03.009

    Article  CAS  PubMed  Google Scholar 

  70. Su X, Mackie RI, Cann IKO (2012) Biochemical and mutational analyses of a multidomain cellulase/mannanase from Caldicellulosiruptor bescii. Appl Environ Microbiol 78:2230. https://doi.org/10.1128/AEM.06814-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Svetlichnyi VA, Svetlichnaya TP, Chernykh NA, Zavarzin GA (1990) Anaerocellum thermophilum gen. nov sp. nov. an extremely thermophilic cellulolytic eubacterium isolated from hot-springs in the Valley of Geysers. Microbiology 59:598–604

    Google Scholar 

  72. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J (2016) NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44:6614–6624. https://doi.org/10.1093/nar/gkw569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Taya M, Hinoki H, Kobayashi T (1985) Tungsten requirement of an extremely thermophilic, cellulolytic anaerobe (strain NA10). Agric Biol Chem 49:2513–2515. https://doi.org/10.1080/00021369.1985.10867120

    Article  CAS  Google Scholar 

  74. Te’o VS, Saul DJ, Bergquist PL (1995) celA, another gene coding for a multidomain cellulase from the extreme thermophile Caldocellum saccharolyticum. Appl Microbiol Biotechnol 43:291–296

    Article  PubMed  Google Scholar 

  75. Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, Angiuoli SV, Crabtree J, Jones AL, Durkin AS, Deboy RT, Davidsen TM, Mora M, Scarselli M, Margarity Ros I, Peterson JD, Hauser CR, Sundaram JP, Nelson WC, Madupu R, Brinkac LM, Dodson RJ, Rosovitz MJ, Sullivan SA, Daugherty SC, Haft DH, Selengut J, Gwinn ML, Zhou L, Zafar N, Khouri H, Radune D, Dimitrov G, Watkins K, O’Connor KJ, Smith S, Utterback TR, White O, Rubens CE, Grandi G, Madoff LC, Kasper DL, Telford JL, Wessels MR, Rappuoli R, Fraser CM (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci USA 102:13950–13955. https://doi.org/10.1073/pnas.0506758102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. van de Werken HJG, Verhaart MRA, VanFossen AL, Willquist K, Lewis DL, Nichols JD, Goorissen HP, Mongodin EF, Nelson KE, van Niel EWJ, Stams AJM, Ward DE, de Vos WM, van der Oost J, Kelly RM, Kengen SWM (2008) Hydrogenomics of the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus. Appl Environ Microbiol 74:6720–6729. https://doi.org/10.1128/Aem.00968-08

    Article  PubMed  PubMed Central  Google Scholar 

  77. Wang Z-W, Hamilton-Brehm SD, Lochner A, Elkins JG, Morrell-Falvey JL (2011) Mathematical modeling of hydrolysate diffusion and utilization in cellulolytic biofilms of the extreme thermophile Caldicellulosiruptor obsidiansis. Bioresour Technol 102:3155–3162. https://doi.org/10.1016/j.biortech.2010.10.104

    Article  CAS  PubMed  Google Scholar 

  78. Wick RR, Judd LM, Gorrie CL, Holt KE (2017) Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 13:e1005595. https://doi.org/10.1371/journal.pcbi.1005595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Xue X, Wang R, Tu T, Shi P, Ma R, Luo H, Yao B, Su X (2015) The N-terminal GH10 domain of a multimodular protein from Caldicellulosiruptor bescii is a versatile xylanase/beta-glucanase that can degrade crystalline cellulose. Appl Environ Microbiol 81:3823–3833. https://doi.org/10.1128/AEM.00432-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yang SJ, Kataeva I, Hamilton-Brehm SD, Engle NL, Tschaplinski TJ, Doeppke C, Davis M, Westpheling J, Adams MWW (2009) Efficient degradation of lignocellulosic plant biomass, without pretreatment, by the thermophilic anaerobe “Anaerocellum thermophilum” DSM 6725. Appl Environ Microbiol 75:4762–4769. https://doi.org/10.1128/Aem.00236-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yarbrough JM, Zhang R, Mittal A, Vander Wall T, Bomble YJ, Decker SR, Himmel ME, Ciesielski PN (2017) Multifunctional cellulolytic enzymes outperform processive fungal cellulases for coproduction of nanocellulose and biofuels. ACS Nano 11:3101–3109. https://doi.org/10.1021/acsnano.7b00086

    Article  CAS  PubMed  Google Scholar 

  82. Ye L, Su X, Schmitz GE, Moon YH, Zhang J, Mackie RI, Cann IK (2012) Molecular and biochemical analyses of the GH44 module of CbMan5B/Cel44A, a bifunctional enzyme from the hyperthermophilic bacterium Caldicellulosiruptor bescii. Appl Environ Microbiol 78:7048–7059. https://doi.org/10.1128/AEM.02009-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yi Z, Su X, Revindran V, Mackie RI, Cann I (2013) Molecular and biochemical analyses of CbCel9A/Cel48A, a highly secreted multi-modular cellulase by Caldicellulosiruptor bescii during growth on crystalline cellulose. PLoS One 8:e84172. https://doi.org/10.1371/journal.pone.0084172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ying Y, Meng D, Chen X, Li F (2013) An extremely thermophilic anaerobic bacterium Caldicellulosiruptor sp. F32 exhibits distinctive properties in growth and xylanases during xylan hydrolysis. Enzyme Microb Technol 53:194–199. https://doi.org/10.1016/j.enzmictec.2013.04.004

    Article  CAS  PubMed  Google Scholar 

  85. Yokoyama H, Yamashita T, Morioka R, Ohmori H (2014) Extracellular secretion of noncatalytic plant cell wall-binding proteins by the cellulolytic thermophile Caldicellulosiruptor bescii. J Bacteriol 196:3784–3792. https://doi.org/10.1128/JB.01897-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Young J, Chung D, Bomble YJ, Himmel ME, Westpheling J (2014) Deletion of Caldicellulosiruptor bescii CelA reveals its crucial role in the deconstruction of lignocellulosic biomass. Biotechnol Biofuel 7:142. https://doi.org/10.1186/s13068-014-0142-6

    Article  CAS  Google Scholar 

  87. Zurawski JV, Conway JM, Lee LL, Simpson HJ, Izquierdo JA, Blumer-Schuette S, Nookaew I, Adams MW, Kelly RM (2015) Comparative analysis of extremely thermophilic Caldicellulosiruptor species reveals common and unique cellular strategies for plant biomass utilization. Appl Environ Microbiol 81:7159–7170. https://doi.org/10.1128/AEM.01622-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zverlov V, Mahr S, Riedel K, Bronnenmeier K (1998) Properties and gene structure of a bifunctional cellulolytic enzyme (CelA) from the extreme thermophile ‘Anaerocellum thermophilum’ with separate glycosyl hydrolase family 9 and 48 catalytic domains. Microbiology 144:457–465. https://doi.org/10.1099/00221287-144-2-457

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the support of an Oakland University Provost Award, awarded to C. Mendoza.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara E. Blumer-Schuette.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 79 kb)

Supplementary material 2 (PDF 391 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A.M.A.M., Mendoza, C., Hauk, V.J. et al. Genomic and physiological analyses reveal that extremely thermophilic Caldicellulosiruptor changbaiensis deploys uncommon cellulose attachment mechanisms. J Ind Microbiol Biotechnol 46, 1251–1263 (2019). https://doi.org/10.1007/s10295-019-02222-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-019-02222-1

Keywords

Navigation