Skip to main content
Log in

Improving freeze-tolerance of baker’s yeast through seamless gene deletion of NTH1 and PUT1

  • Genetics and Molecular Biology of Industrial Organisms
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Baker’s yeast strains with freeze-tolerance are highly desirable to maintain high leavening ability after freezing. Enhanced intracellular concentration of trehalose and proline in yeast is linked with freeze-tolerance. In this study, we constructed baker’s yeast with enhanced freeze-tolerance by simultaneous deletion of the neutral trehalase-encoded gene NTH1 and the proline oxidase-encoded gene PUT1. We first used the two-step integration-based seamless gene deletion method to separately delete NTH1 and PUT1 in haploid yeast. Subsequently, through two rounds of hybridization and sporulation-based allelic exchange and colony PCR-mediated tetrad analysis, we obtained strains with restored URA3 and deletion of NTH1 and/or PUT1. The resulting strain showed higher cell survival and dough-leavening ability after freezing compared to the wild-type strain due to enhanced accumulation of trehalose and/or proline. Moreover, mutant with simultaneous deletion of NTH1 and PUT1 exhibits the highest relative dough-leavening ability after freezing compared to mutants with single-gene deletion perhaps due to elevated levels of both trehalose and proline. These results verified that it is applicable to construct frozen dough baker’s yeast using the method proposed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Akada R, Kitagawa T, Kaneko S, Toyonaga D, Ito S, Kakihara Y, Hoshida H, Morimura S, Kondo A, Kida K (2006) PCR-mediated seamless gene deletion and marker recycling in Saccharomyces cerevisiae. Yeast 23(5):399–405

    Article  CAS  PubMed  Google Scholar 

  2. Akada R, Murakane T, Nishizawa Y (2000) DNA extraction method for screening yeast clones by PCR. BioTechniques 28(4):668–674

    CAS  PubMed  Google Scholar 

  3. Albers E, Larsson C (2009) A comparison of stress tolerance in YPD and industrial lignocellulose-based medium among industrial and laboratory yeast strains. J Ind Microbiol Biotechnol 36(8):1085–1091

    Article  CAS  PubMed  Google Scholar 

  4. Alves-Araújo C, Almeida MJ, Sousa MJ, Leão C (2004) Freeze tolerance of the yeast Torulaspora delbrueckii: cellular and biochemical basis. FEMS Microbiol Lett 240(1):7–14

    Article  PubMed  Google Scholar 

  5. Bahalul M, Kaneti G, Kashi Y (2010) Ether-zymolyase ascospore isolation procedure: an efficient protocol for ascospores isolation in Saccharomyces cerevisiae yeast. Yeast 27(12):999–1003

    Article  CAS  PubMed  Google Scholar 

  6. Bates L, Waldren R, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207

    Article  CAS  Google Scholar 

  7. Brandriss MC (1983) Proline utilization in Saccharomyces cerevisiae: analysis of the cloned PUT2 gene. Mol Cell Biol 3(10):1846–1856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dong J, Wang G, Zhang C, Tan H, Sun X, Wu M, Xiao D (2013) A two-step integration method for seamless gene deletion in baker’s yeast. Anal Biochem 439(1):30–36

    Article  CAS  PubMed  Google Scholar 

  9. Garay-Arroyo A, Covarrubias A, Clark I, Nino I, Gosset G, Martinez A (2004) Response to different environmental stress conditions of industrial and laboratory Saccharomyces cerevisiae strains. Appl Microbiol Biotechnol 63(6):734–741

    Article  CAS  PubMed  Google Scholar 

  10. Gietz RD, Akio S (1988) New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74(2):527–534

    Article  CAS  PubMed  Google Scholar 

  11. Gietz RD, Schiestl RH, Willems AR, Woods RA (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11(4):355–360

    Article  CAS  PubMed  Google Scholar 

  12. Hino A, Mihara K, Nakashima K, Takano H (1990) Trehalose levels and survival ratio of freeze-tolerant versus freeze-sensitive yeasts. Appl Environ Microb 56(5):1386–1391

    CAS  Google Scholar 

  13. Hsu K, Hoseney R, Seib P (1979) Frozen dough. I. Factors affecting stability of yeasted doughs [quality, fermentation, freeze damage]. Cereal Chem 56:419–423

    Google Scholar 

  14. Hsu K, Hoseney R, Seib P (1979) Frozen dough. II. Effects of freezing and storing conditions on the stability of yeasted doughs. Cereal Chem 56:414–426

    Google Scholar 

  15. Jacq C, Alt-Mörbe J, Andre B, Arnold W, Bahr A, Ballesta J, Bargues M, Baron L, Becker A, Biteau N (1997) The nucleotide sequence of Saccharomyces cerevisiae chromosome IV. Nature 387:75–78

    CAS  PubMed  Google Scholar 

  16. Jiang T, Xiao D, Gao Q (2008) Characterisation of maltose metabolism in lean dough by lagging and non-lagging baker’s yeast strains. Ann Microbiol 58(4):655–660

    Article  CAS  Google Scholar 

  17. Jules M, Beltran G, Francois J, Parrou JL (2008) New insights into trehalose metabolism by Saccharomyces cerevisiae: NTH2 encodes a functional cytosolic trehalase, and deletion of TPS1 reveals Ath1p-dependent trehalose mobilization. Appl Environ Microbiol 74(3):605–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kopp M, Müller H, Holzer H (1993) Molecular analysis of the neutral trehalase gene from Saccharomyces cerevisiae. J Biol Chem 268(7):4766–4774

    CAS  PubMed  Google Scholar 

  19. Lewis J, Learmonth R, Watson K (1993) Role of growth phase and ethanol in freeze-thaw stress resistance of Saccharomyces cerevisiae. Appl Environ Microb 59(4):1065–1071

    CAS  Google Scholar 

  20. Liu JJ, Ding WT, Zhang GC, Wang JY (2011) Improving ethanol fermentation performance of Saccharomyces cerevisiae in very high-gravity fermentation through chemical mutagenesis and meiotic recombination. Appl Microbiol Biotechnol 91(4):1239–1246

    Article  CAS  PubMed  Google Scholar 

  21. Murakami Y, Yokoigawa K, Kawai F, Kawai H (1996) Lipid composition of commercial bakers’ yeasts having different freeze-tolerance in frozen dough. Biosci Biotech Bioch 60:1874–1878

    Article  CAS  Google Scholar 

  22. Randez-Gil F, Sanz P, Prieto JA (1999) Engineering baker’s yeast: room for improvement. Trends Biotechnol 17(6):237–244

    Article  CAS  PubMed  Google Scholar 

  23. Sasano Y, Haitani Y, Hashida K, Ohtsu I, Shima J, Takagi H (2012) Simultaneous accumulation of proline and trehalose in industrial baker’s yeast enhances fermentation ability in frozen dough. J Biosci Bioeng 113(5):592–595

    Article  CAS  PubMed  Google Scholar 

  24. Sherman F (2002) Getting started with yeast. Methods Enzymol 350:3–41

    Article  CAS  PubMed  Google Scholar 

  25. Shima J, Hino A, Yamada-Iyo C, Suzuki Y, Nakajima R, Watanabe H, Mori K, Takano H (1999) Stress tolerance in doughs of Saccharomyces cerevisiae trehalase mutants derived from commercial baker’s yeast. Appl Environ Microb 65(7):2841–2846

    CAS  Google Scholar 

  26. Shima J, Sakata-Tsuda Y, Suzuki Y, Nakajima R, Watanabe H, Kawamoto S, Takano H (2003) Disruption of the CAR1 gene encoding arginase enhances freeze tolerance of the commercial baker’s yeast Saccharomyces cerevisiae. Appl Environ Microb 69(1):715–718

    Article  CAS  Google Scholar 

  27. Shima J, Takagi H (2009) Stress-tolerance of baker’s-yeast (Saccharomyces cerevisiae) cells: stress-protective molecules and genes involved in stress tolerance. Biotechnol Appl Bioc 53(3):155–164

    Article  CAS  Google Scholar 

  28. Spiro RG (1966) Analysis of sugars found in glycoproteins. Methods Enzymol 8:3–26

    Article  CAS  Google Scholar 

  29. Stambuk B, Crowe J, Crowe L, Panek A, Dearaujo P (1993) A Dependable Method for the Synthesis of [14C] Trehalose. Anal Biochem 212(1):150–153

    Article  CAS  PubMed  Google Scholar 

  30. Stewart PR (1975) Analytical methods for yeasts. Methods Cell Biol 12:111–147

    Article  CAS  PubMed  Google Scholar 

  31. Sun X, Zhang CY, Dong J, Wu MY, Zhang Y, Xiao DG (2012) Enhanced leavening properties of baker’s yeast overexpressing MAL62 with deletion of MIG1 in lean dough. J Ind Microbiol Biotechnol 39(10):1533–1539

    Article  PubMed  Google Scholar 

  32. Takagi H (2008) Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications. Appl Microbiol Biotechnol 81(2):211–223

    Article  CAS  PubMed  Google Scholar 

  33. Takagi H, Iwamoto F, Nakamori S (1997) Isolation of freeze-tolerant laboratory strains of Saccharomyces cerevisiae from proline-analogue-resistant mutants. Appl Microbiol Biotechnol 47(4):405–411

    Article  CAS  PubMed  Google Scholar 

  34. Takagi H, Sakai K, Morida K, Nakamori S (2000) Proline accumulation by mutation or disruption of the proline oxidase gene improves resistance to freezing and desiccation stresses in Saccharomyces cerevisiae. FEMS Microbiol Lett 184(1):103–108

    Article  CAS  PubMed  Google Scholar 

  35. Van Dijck P, Gorwa M-F, Lemaire K, Teunissen A, Versele M, Colombo S, Dumortier F, Ma P, Tanghe A, Loiez A (2000) Characterization of a new set of mutants deficient in fermentation-induced loss of stress resistance for use in frozen dough applications. Int J Food Microbiol 55(1):187–192

    Article  PubMed  Google Scholar 

  36. Wang S, Brandriss M (1986) Proline utilization in Saccharomyces cerevisiae: analysis of the cloned PUT1 gene. Mol Cell Biol 6(7):2638–2645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yokoigawa K, Sato M, Soda K (2006) Simple improvement in freeze-tolerance of bakers’ yeast with poly-γ-glutamate. J Biosci Bioeng 102(3):215–219

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by program for National Natural Science Foundation of China (Grant Number 31301536), Changjiang Scholars and Innovative Research Team in University (IRT1166), the National High Technology Research, the Development Program of China (863 Program) (Grant Number 2012AA022108), the Youth Foundation of Application Base and Frontier Technology Project of Tianjin, China (12JCQNJC06500), and Science and Research Foundation of Tianjin University of Science and Technology (20120114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongguang Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, J., Chen, D., Wang, G. et al. Improving freeze-tolerance of baker’s yeast through seamless gene deletion of NTH1 and PUT1 . J Ind Microbiol Biotechnol 43, 817–828 (2016). https://doi.org/10.1007/s10295-016-1753-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-016-1753-7

Keywords

Navigation