Skip to main content
Log in

Discovery and development of surotomycin for the treatment of Clostridium difficile

  • Review
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The primary challenge for treating Clostridium difficile infections (CDI) is maintenance of clinical response after the end of treatment (sustained clinical response). Disease recurrence following a positive clinical response occurs in approximately 6–25 % of patients after the first episode and in up to 65 % for subsequent recurrences. Surotomycin, a novel cyclic lipopeptide antibiotic with a core derived by Streptomyces roseosporus fermentation, disrupts C. difficile cellular membrane activity in both logarithmic and stationary phases and minimally disturbs normal gastrointestinal microbiota because of its lack of activity against Gram-negative anaerobes and facultative anaerobes. Preclinical and clinical evidence indicate that surotomycin has low oral bioavailability, allowing gastrointestinal tract concentrations to greatly exceed its minimum inhibitory concentration for C. difficile. Surotomycin is well tolerated and effective in hamster models of CDI. Phase 2 clinical evidence suggests that surotomycin (250 mg twice daily) is an effective CDI treatment, with statistically lower recurrence rates than vancomycin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adams HM, Li X, Mascio C, Chesnel L, Palmer KL (2015) Mutations associated with reduced surotomycin susceptibility in Clostridium difficile and Enterococcus species. Antimicrob Agents Chemother 59:4139–4147. doi:10.1128/AAC.00526-15

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. Alam MZ, Wu X, Mascio C, Chesnel L, Hurdle JG (2015) Mode of action and bactericidal properties of surotomycin against growing and non-growing Clostridium difficile. Antimicrob Agents Chemother 59:5165–5170. doi:10.1128/AAC.01087-15

    Article  PubMed  CAS  Google Scholar 

  3. Boeck LD, Fukuda DS, Abbott BJ, Debono M (1988) Deacylation of A21978C, an acidic lipopeptide antibiotic complex, by Actinoplanes utahensis. J Antibiot (Tokyo) 41:1085–1092

    Article  CAS  Google Scholar 

  4. Bouillaut L, McBride S, Sorg JA, Schmidt DJ, Suarez JM, Tzipori S, Mascio C, Chesnel L, Sonenshein AL (2015) Effects of surotomycin on Clostridium difficile viability and toxin production in vitro. Antimicrob Agents Chemother 59:4199–4205. doi:10.1128/AAC.00275-15

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Cannon K, Byrne B, Happe JS, Louie T (2012) Enteric microbiome profiles during a phase 2 clinical trial of CB-183,315 or vancomycin for treatment of Clostridium difficile infection. Presented at 22nd European congress of clinical microbiology and infectious diseases (ECCMID), London, UK, March 31–April 3, 2012. Poster P 2250

  6. Chandorkar G, Zhan Q, Donovan J, Rege S, Patino H (2013) Pharmacokinetics of surotomycin from a phase 1 multiple ascending dose study in healthy volunteers. Presented at IDWeek 2013, San Francisco, CA, October 2–6, 2013. Poster 719

  7. Chilton CH, Crowther GS, Todhunter SL, Nicholson S, Freeman J, Chesnel L, Wilcox MH (2014) Efficacy of surotomycin in an in vitro gut model of Clostridium difficile infection. J Antimicrob Chemother 69:2426–2433. doi:10.1093/jac/dku141

    Article  PubMed  CAS  Google Scholar 

  8. Citron DM, Tyrrell KL, Goldstein EJC (2010) Impact of CB-183,315, a novel lipopeptide, on fecal flora of 30 subjects in a phase I clinical trial. Presented at Interscience conference on antimicrobial agents and chemotherapy, Boston, MA, September 12–15, 2010. Oral presentation

  9. Citron DM, Tyrrell KL, Merriam CV, Goldstein EJ (2012) In vitro activities of CB-183,315, vancomycin, and metronidazole against 556 strains of Clostridium difficile, 445 other intestinal anaerobes, and 56 Enterobacteriaceae species. Antimicrob Agents Chemother 56:1613–1615. doi:10.1128/AAC.05655-11

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. CLSI (2009) Methods for antimicrobial susceptibility testing of anaerobic bacteria; approved standard. CLSI document M11-A7. Clinical and Laboratory Standards Institute, Wayne, PA

  11. Cohen SH, Gerding DN, Johnson S, Kelly CP, Loo VG, McDonald LC, Pepin J, Wilcox MH, Society for Healthcare Epidemiology of America, Infectious Diseases Society of America (2010) Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the society for healthcare epidemiology of America (SHEA) and the infectious diseases society of America (IDSA). Infect Control Hosp Epidemiol 31:431–455. doi:10.1086/651706

    Article  PubMed  Google Scholar 

  12. Cornely OA, Crook DW, Esposito R, Poirier A, Somero MS, Weiss K, Sears P, Gorbach S, Group OPTCS (2012) Fidaxomicin versus vancomycin for infection with Clostridium difficile in Europe, Canada, and the USA: a double-blind, non-inferiority, randomised controlled trial. Lancet Infect Dis 12:281–289. doi:10.1016/S1473-3099(11)70374-7

    Article  PubMed  CAS  Google Scholar 

  13. Crook DW, Walker AS, Kean Y, Weiss K, Cornely OA, Miller MA, Esposito R, Louie TJ, Stoesser NE, Young BC, Angus BJ, Gorbach SL, Peto TE, for the Study 003/004 Teams (2012) Fidaxomicin versus vancomycin for Clostridium difficile infection: meta-analysis of pivotal randomized controlled trials. Clin Infect Dis 55(Suppl 2):S93–103. doi:10.1093/cid/cis499

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Cubist Pharmaceuticals Study of CB-183,315 in patients with Clostridium difficile associated diarrhea. http://clinicaltrials.gov/ct2/show/NCT01597505?term=CB-183%2C315&rank=2&submit_fld_opt. Accessed 9 Oct 2015

  15. Cubist Pharmaceuticals A Study of CB-183,315 in patients with Clostridium difficile associated diarrhea. http://clinicaltrials.gov/ct2/show/NCT01598311?term=CB-183%2C315&rank=3&submit_fld_opt. Accessed 9 Oct 2015

  16. D’Costa VM, Mukhtar TA, Patel T, Koteva K, Waglechner N, Hughes DW, Wright GD, De Pascale G (2012) Inactivation of the lipopeptide antibiotic daptomycin by hydrolytic mechanisms. Antimicrob Agents Chemother 56:757–764. doi:10.1128/AAC.05441-11

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Dvorchik BH, Brazier D, DeBruin MF, Arbeit RD (2003) Daptomycin pharmacokinetics and safety following administration of escalating doses once daily to healthy subjects. Antimicrob Agents Chemother 47:1318–1323

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Eisenstein BI, Oleson FB Jr, Baltz RH (2010) Daptomycin: from the mountain to the clinic, with essential help from Francis Tally, MD. Clin Infect Dis 50(Suppl 1):S10–S15. doi:10.1086/647938

    Article  PubMed  CAS  Google Scholar 

  19. Francis MB, Allen CA, Sorg JA (2015) Spore cortex hydrolysis precedes DPA release during Clostridium difficile spore germination. J Bacteriol 197:2276–2283. doi:10.1128/JB.02575-14

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Franzblau SG, DeGroote MA, Cho SH, Andries K, Nuermberger E, Orme IM, Mdluli K, Angulo-Barturen I, Dick T, Dartois V, Lenaerts AJ (2012) Comprehensive analysis of methods used for the evaluation of compounds against Mycobacterium tuberculosis. Tuberculosis (Edinb) 92:453–488. doi:10.1016/j.tube.2012.07.003

    Article  CAS  Google Scholar 

  21. Goudarzi M, Seyedjavadi SS, Goudarzi H, Mehdizadeh Aghdam E, Nazeri S (2014) Clostridium difficile infection: epidemiology, pathogenesis, risk factors, and therapeutic options. Scientifica (Cairo) 2014:916826. doi:10.1155/2014/916826

    Google Scholar 

  22. Hurdle JG, O’Neill AJ, Chopra I, Lee RE (2011) Targeting bacterial membrane function: an underexploited mechanism for treating persistent infections. Nat Rev Microbiol 9:62–75. doi:10.1038/nrmicro2474

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Jarrad AM, Karoli T, Blaskovich MA, Lyras D, Cooper MA (2015) Clostridium difficile drug pipeline: challenges in discovery and development of new agents. J Med Chem 58:5164–5185. doi:10.1021/jm5016846

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Johnson S (2009) Recurrent Clostridium difficile infection: a review of risk factors, treatments, and outcomes. J Infect 58:403–410. doi:10.1016/j.jinf.2009.03.010

    Article  PubMed  Google Scholar 

  25. Lanis JM, Heinlen LD, James JA, Ballard JD (2013) Clostridium difficile 027/BI/NAP1 encodes a hypertoxic and antigenically variable form of TcdB. PLoS Pathog 9:e1003523. doi:10.1371/journal.ppat.1003523

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Lessa FC, Mu Y, Bamberg WM, Beldavs ZG, Dumyati GK, Dunn JR, Farley MM, Holzbauer SM, Meek JI, Phipps EC, Wilson LE, Winston LG, Cohen JA, Limbago BM, Fridkin SK, Gerding DN, McDonald LC (2015) Burden of Clostridium difficile infection in the United States. N Engl J Med 372:825–834. doi:10.1056/NEJMoa1408913

    Article  PubMed  CAS  Google Scholar 

  27. Louie TJ, Miller MA, Mullane KM, Weiss K, Lentnek A, Golan Y, Gorbach S, Sears P, Shue YK, for the OPT-80-003 Clinical Study Group (2011) Fidaxomicin versus vancomycin for Clostridium difficile infection. N Engl J Med 364:422–431. doi:10.1056/NEJMoa0910812

    Article  PubMed  CAS  Google Scholar 

  28. Mascio CT, Chesnel L, Thorne G, Silverman JA (2014) Surotomycin demonstrates low in vitro frequency of resistance and rapid bactericidal activity in Clostridium difficile, Enterococcus faecalis, and Enterococcus faecium. Antimicrob Agents Chemother 58:3976–3982. doi:10.1128/AAC.00124-14

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Mascio CT, Mortin LI, Howland KT, Van Praagh AD, Zhang S, Arya A, Chuong CL, Kang C, Li T, Silverman JA (2012) In vitro and in vivo characterization of CB-183,315, a novel lipopeptide antibiotic for treatment of Clostridium difficile. Antimicrob Agents Chemother 56:5023–5030. doi:10.1128/AAC.00057-12

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. McFarland LV (2005) Alternative treatments for Clostridium difficile disease: what really works? J Med Microbiol 54:101–111

    Article  PubMed  CAS  Google Scholar 

  31. Merrigan M, Venugopal A, Mallozzi M, Roxas B, Viswanathan VK, Johnson S, Gerding DN, Vedantam G (2010) Human hypervirulent Clostridium difficile strains exhibit increased sporulation as well as robust toxin production. J Bacteriol 192:4904–4911. doi:10.1128/JB.00445-10

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Mortin LI, Van Praagh ADG, Zhang S, Arya A, Chuong L, Kang C, Zhang X, Li T (2010) Efficacy of CB-183,315, a novel lipopeptide antibiotic, in a hamster model of Clostridium difficile infection (CDI). Presented at Interscience conference on antimicrobial agents and chemotherapy, Boston, MA, September 12–15, 2010. Poster B-707

  33. Patino H, Stevens C, Louie T, Bernardo P, Friedland I (2011) Efficacy and safety of the lipopeptide CB-183,315 for the treatment of C. difficile infection. Presented at Interscience conference on antimicrobial agents and chemotherapy, Chicago, IL, September 17–20, 2011. Poster 230

  34. Snydman DR, Jacobus NV, McDermott LA (2012) Activity of a novel cyclic lipopeptide, CB-183,315, against resistant Clostridium difficile and other Gram-positive aerobic and anaerobic intestinal pathogens. Antimicrob Agents Chemother 56:3448–3452. doi:10.1128/AAC.06257-11

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Steele SR, McCormick J, Melton GB, Paquette I, Rivadeneira DE, Stewart D, Buie WD, Rafferty J (2015) Practice parameters for the management of Clostridium difficile infection. Dis Colon Rectum 58:10–24. doi:10.1097/DCR.0000000000000289

    Article  PubMed  Google Scholar 

  36. Sunenshine RH, McDonald LC (2006) Clostridium difficile-associated disease: new challenges from an established pathogen. Cleve Clin J Med 73:187–197

    Article  PubMed  Google Scholar 

  37. Surawicz CM, Brandt LJ, Binion DG, Ananthakrishnan AN, Curry SR, Gilligan PH, McFarland LV, Mellow M, Zuckerbraun BS (2013) Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections. Am J Gastroenterol 108:478–498; quiz 499. doi:10.1038/ajg.2013.4

  38. Yin N, Li J, He Y, Herradura PS, Pearson A, Mesleh MF, Mascio CT, Howland K, Steenbergen J, Thorne GM, Citron D, Van Praagh AD, Mortin LI, Keith D, Silverman J, Metcalf C (2015) Structure-activity relationship studies of a series of semi-synthetic lipopeptides leading to the discovery of surotomycin, a novel cyclic lipopeptide being developed for the treatment of Clostridium difficile-associated diarrhea. J Med Chem 58:5137–5142. doi:10.1021/acs.jmedchem.5b00366

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for medical editorial assistance was provided by Cubist Pharmaceuticals. We thank Tamalette Loh, PhD, ProEd Communications, Inc., for her medical editorial assistance with this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Chesnel.

Ethics declarations

Conflict of interest

Victoria Knight-Connoni reports that work performed on this publication was done while employed by Cubist Pharmaceuticals. Carmela Mascio reports that work performed on this publication was done while employed by Cubist Pharmaceuticals. Laurent Chesnel reports that work performed on this publication was done while employed by Cubist Pharmaceuticals, and current employment and stock ownership from Merck. Jared Silverman reports that he was an employee of Cubist Pharmaceuticals during the research and manuscript preparation.

Additional information

Special Issue: Natural Product Discovery and Development in the Genomic Era. Dedicated to Professor Satoshi Ōmura for his numerous contributions to the field of natural products.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knight-Connoni, V., Mascio, C., Chesnel, L. et al. Discovery and development of surotomycin for the treatment of Clostridium difficile . J Ind Microbiol Biotechnol 43, 195–204 (2016). https://doi.org/10.1007/s10295-015-1714-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-015-1714-6

Keywords

Navigation