Skip to main content

Advertisement

Log in

Antibiotic Treatment Pipeline for Clostridioides difficile Infection (CDI): A Wide Array of Narrow-Spectrum Agents

  • Antimicrobial Development and Drug Resistance (KC Claeys and J Smith, Section Editors)
  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Clostridioides difficile infection (CDI) represents a major burden on the U.S. healthcare system. Despite the U.S. Food and Drug Administration (FDA) approval of fidaxomicin in 2011, observed rates of clinical cure and CDI recurrence suggest there is room to improve. As a result, there are many antibiotic treatments in the developmental pipeline for CDI. The purpose of this focused review is to summarize these antibiotic therapies in all stages of development.

Recent Findings

Here, we discuss 10 antibiotics in development, including three that have completed phase II trials, five in phase II trials, and two still undergoing preclinical trials.

Summary

The antibiotic treatment pipeline for CDI contains a plethora of narrow-spectrum agents with unique mechanisms of action and potent activity against C. difficile. Only ridinilazole, LFF571, and ramoplanin have completed phase II trials, and ridinilazole is the only antibiotic to begin recruitment for a phase III trial. While the future of CDI treatment appears bright, the healthcare community will have to await the results from phase III trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Bartlett JG. Historical perspectives on studies of Clostridium difficile and C. difficile infection. Clin Infect Dis. 2008;46(Suppl 1):S4–S11.

    PubMed  Google Scholar 

  2. • Magill SS, O’Leary E, Janelle SJ, Thompson DL, Dumyati G, Nadle J, et al. Changes in prevalence of health care-associated infections in U.S. hospitals. N Engl J Med. 2018;379(18):1732–44 A point-prevalence survey identifyingC. difficileas the most common pathogen causing health care-associated infections in the U.S.

    PubMed  Google Scholar 

  3. • Guh AY, Mu Y, Winston LG, Johnston H, Olson D, Farley MM, et al. Trends in U.S. burden of Clostridioides difficile infection and outcomes. N Engl J Med. 2020;382:1320–30 Results from the Centers for Disease Control and Prevention (CDC) Emerging Infections Program (EIP) population-based surveillance ofC. difficileinfection (CDI) incidence between 2011 and 2017.

    CAS  PubMed  Google Scholar 

  4. Centers for Disease Control and Prevention (CDC). Antibiotic resistance threats in the United States (U.S.), 2019. Atlanta: U.S. Department of Health and Human Services, CDC; 2019.

    Google Scholar 

  5. Hensgens MP, Goorhuis A, Dekkers OM, Kuijper EJ. Time interval of increased risk for Clostridium difficile infection after exposure to antibiotics. J Antimicrob Chemother. 2012;67(3):742–8.

    CAS  PubMed  Google Scholar 

  6. Gerding DN, Johnson S, Peterson LR, Mulligan ME, Silva J Jr. Clostridium difficile-associated diarrhea and colitis. Infect Control Hosp Epidemiol. 1995;16(8):459–77.

    CAS  PubMed  Google Scholar 

  7. Cohen SH, Gerding DN, Johnson S, Kelly CP, Loo VG, McDonald LC, et al. Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the Society for Healthcare Epidemiology of America (SHEA) and the Infectious Diseases Society of America (IDSA). Infect Control Hosp Epidemiol. 2010;31(5):431–55.

    PubMed  Google Scholar 

  8. • Beinortas T, Burr NE, Wilcox MH, Subramanian V. Comparative efficacy of treatments for Clostridium difficile infection: a systematic review and network meta-analysis. Lancet Infect Dis. 2018;18:1035–44 A systematic review and meta-analysis comparing the efficacy of 13 agents developed to treatC. difficileinfection (CDI).

    CAS  PubMed  Google Scholar 

  9. Johnson S, Louie TJ, Gerding DN, Cornely OA, Chasan-Taber S, Fitts D, et al. Vancomycin, metronidazole, or tolevamer for Clostridium difficile infection: results from two multinational, randomized, controlled trials. Clin Infect Dis. 2014;59(3):345–54.

    CAS  PubMed  Google Scholar 

  10. Merck & Co., Inc. Dificid (fidaxomicin). Whitehouse Station: Merck & Co., Inc; 2020.

    Google Scholar 

  11. CutisPharma I. Firvanq (vancomycin hydrochloride). Wilmington: CutisPharma, Inc; 2018.

    Google Scholar 

  12. • Mcdonald LC, Gerding DN, Johnson S, Bakken JS, Carroll KC, Coffin SE, et al. Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis. 2018;66(7). https://doi.org/10.1093/cid/cix1085An update to the 2010 clinical practice guidelines that encourages the use of treatment options shown to reduceC. difficileinfection (CDI) recurrences.

  13. Teasley DG, Gerding DN, Olson MM, Peterson LR, Gebhard RL, Schwartz MJ, et al. Prospective randomised trial of metronidazole versus vancomycin for Clostridium difficile-associated diarrhoea and colitis. Lancet. 1983;2(8358):1043–6.

    CAS  PubMed  Google Scholar 

  14. Zar FA, Bakkanagari SR, Moorthi KM, Davis MB. A comparison of vancomycin and metronidazole for the treatment of Clostridium difficile-associated diarrhea, stratified by disease severity. Clin Infect Dis. 2007;45(3):302–7.

    CAS  PubMed  Google Scholar 

  15. Rokas KEE, Johnson JW, Beardsley JR, Ohl CA, Luther VP, Williamson JC. The addition of intravenous metronidazole to oral vancomycin is associated with improved mortality in critically ill patients with Clostridium difficile infection. Clin Infect Dis. 2015;61(6):934–41.

    CAS  PubMed  Google Scholar 

  16. Wang Y, Schluger A, Li J, Gomez-Simmonds A, Salmasian H, Freedberg DE. Does addition of intravenous metronidazole to oral vancomycin improve outcomes in Clostridioides difficile infection? Clin Infect Dis. 2019. https://doi.org/10.1093/cid/ciz1115.

  17. Louie TJ, Miller MA, Mullane KM, Weizz K, Lentnek A, Golan Y, et al. Fidaxomicin versus vancomycin for Clostridium difficile infection. N Engl J Med. 2011;364(5):422–31.

    CAS  PubMed  Google Scholar 

  18. Cornely OA, Crook DW, Esposito R, Poirier A, Somero MS, Weiss K, et al. Fidaxomicin versus vancomycin for infection with Clostridium difficile in Europe, Canada, and the USA: a double-blind, non-inferiority, randomised controlled trial. Lancet Infect Dis. 2012;12:281–9.

    CAS  PubMed  Google Scholar 

  19. Bartsch SM, Umscheid CA, Fishman N, Lee BY. Is fidaxomicin worth the cost? An economic analysis. Clin Infect Dis. 2013;57(4):555–61.

    PubMed  PubMed Central  Google Scholar 

  20. Gallagher JC, Reilly JP, Navalkele B, Downham G, Haynes K, Trivedi M. Clinical and economic benefits of fidaxomicin compared to vancomycin for Clostridium difficile infection. Antimicrob Agents Chemother. 2015;59(11):7007–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Le P, Nghiem VT, Mullen PD, Deshpande A. Cost-effectiveness of competing treatment strategies for Clostridium difficile infection: a systematic review. Infect Control Hosp Epidemiol. 2018;39(4):412–24.

    PubMed  PubMed Central  Google Scholar 

  22. Bariola JR, Khadem T. Impact of updated IDSA Clostridium difficile guidelines on the use of fidaxomicin in a large health system. Open Forum Infect Dis. 2019;6(Supp 2):S666.

    PubMed Central  Google Scholar 

  23. • Rajasingham R, Enns EA, Khoruts A, Vaughn BP. Cost-effectiveness of treatment regimens for Clostridioides difficile infection: an evaluation of the 2018 Infectious Diseases Society of America guidelines. Clin Infect Dis. 2020;70(5):754–62 A recent cost-effectiveness analysis supporting the widespread use of fidaxomicin.

    PubMed  Google Scholar 

  24. Garey KW, Ghantoji SS, Shah DN, Habib M, Arora V, Jiang ZD, et al. A randomized, double-blind, placebo-controlled pilot study to assess the ability of rifaximin to prevent recurrent diarrhoea in patients with Clostridium difficile infection. J Antimicrob Chemother. 2011;66(12):2850–5.

    CAS  PubMed  Google Scholar 

  25. Louie TJ, Peppe J, Watt CK, Johnson D, Mohammed R, Dow G, et al. Tolevamer, a novel nonantibiotic polymer, compared with vancomycin in the treatment of mild to moderately severe Clostridium difficile-associated diarrhea. Clin Infect Dis. 2006;43(4):411–20.

    CAS  PubMed  Google Scholar 

  26. Louie T, Nord CE, Talbot GH, Wilcox M, Gerding DN, Buitrago M, et al. Multicenter, double-blind, randomized, phase 2 study evaluating the novel antibiotic cadazolid in patients with Clostridium difficile infection. Antimicrob Agents Chemother. 2015;59(10):6266–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee CH, Patino H, Stevens C, Rege S, Chesnel L, Louie T, et al. Surotomycin versus vancomycin for Clostridium difficile infection: phase 2, randomized, controlled, double-blind, non-inferiority, multicentre trial. J Antimicrob Chemother. 2016;71:2964–71.

    CAS  PubMed  Google Scholar 

  28. • Boix V, Fedorak RN, Mullane KM, Pesant Y, Stoutenburgh U, Jin M, et al. Primary outcomes from a phase 3, randomized, double-blind, active-controlled trial of surotomycin in subjects with infection. Open Forum Infect Dis. 2017;4(1):ofw275 Results from a phase III clinical trial of surotomycin in which surotomycin failed to demonstrate non-inferiority to vancomycin.

    PubMed  PubMed Central  Google Scholar 

  29. Daley P, Louie T, Lutz JE, Khanna S, Stoutenburgh U, Jin M, et al. Surotomycin versus vancomycin in adults with Clostridium difficile infection: primary clinical outcomes from the second pivotal, randomized, double-blind, phase 3 trial. J Antimicrob Chemother. 2017;72(12):3462–70.

    CAS  PubMed  Google Scholar 

  30. • Gerding DN, Cornely OA, Grill S, Kracker H, Marrast AC, Nord CE, et al. Cadazolid for the treatment of Clostridium difficile infection: results of two double-blind, placebo-controlled, non-inferiority, randomised phase 3 trials. Lancet Infect Dis. 2019;19(3):265–74 Results from two phase III clinical trials of cadazolid in which cadazolid failed to demonstrate non-inferiority to vancomycin.

    CAS  PubMed  Google Scholar 

  31. Alam MZ, Wu X, Mascio C, Chesnel L, Hurdle JG. Mode of action and bactericidal properties of surotomycin against growing and nongrowing Clostridium difficile. Antimicrob Agents Chemother. 2015;59(9):5165–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Mascio CT, Mortin LI, Howland KT, Van Praagh ADG, Zhang S, Arya A, et al. In vitro and in vivo characterization of CB-183,315, a novel lipopeptide antibiotic for treatment of Clostridium difficile. Antimicrob Agents Chemother. 2012;56(10):5023–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Basséres E, Endres BT, Khaleduzzaman M, Miraftabi F, Alam MJ, Vickers RJ, et al. Impact on toxin production and cell morphology in Clostridium difficile by ridinilazole (SMT19969), a novel treatment for C. difficile infection. J Antimicrob Chemother. 2016;71:1245–51.

    PubMed  PubMed Central  Google Scholar 

  34. •• Vickers RJ, Tillotson GS, Nathan R, Hazan S, Pullman J, Lucasti C, et al. Efficacy and safety of ridinilazole compared with vancomycin for the treatment of Clostridium difficile infection: a phase 2, randomised, double-blind, active-controlled, non-inferiority study. Lancet Infect Dis. 2017;17:735–44 A phase II trial in which ridinilazole was deemed superior to vancomycin in terms of sustained clinical response.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. A phase II, randomized, open-label, active-controlled clinical study to investigate the safety and efficacy of SMT19969 (200 mg BID) for 10 days compared with fidaxomicin (200 mg BID) for 10 days for the treatment of Clostridium difficile infection (CDI). https://ClinicalTrials.gov/show/NCT02784002. Accessed January 29, 2020.

  36. A phase 3, randomized, double-blind, active controlled study to compare the efficacy and safety of ridinilazole (200 mg, bid) for 10 days with vancomycin (125 mg, qid) for 10 days in the treatment of Clostridium difficile infection (CDI). https://ClinicalTrials.gov/show/NCT03595553. Accessed January 29, 2020.

  37. A phase 3, randomized, double-blind, active controlled study to compare the efficacy and safety of ridinilazole (200 mg, bid) for 10 days with vancomycin (125 mg, qid) for 10 days in the treatment of Clostridium difficile infection (CDI). https://ClinicalTrials.gov/show/NCT03595566. Accessed January 29, 2020.

  38. Goldstein EJ, Citron DM, Tyrrell KL, Merriam CV. Comparative in vitro activities of SMT19969, a new antimicrobial agent, against Clostridium difficile and 350 gram-positive and gram-negative aerobic and anaerobic intestinal flora isolates. Antimicrob Agents Chemother. 2013;57(10):4872–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Goldstein EJ, Citron DM, Tyrrell KL. Comparative in vitro activities of SMT19969, a new antimicrobial agent, against 162 strains from 35 less frequently recovered intestinal Clostridium species: implications for Clostridium difficile recurrence. Antimicrob Agents Chemother. 2014;58(2):1187–91.

    PubMed  PubMed Central  Google Scholar 

  40. Corbett D, Wise A, Birchall S, Warn P, Baines SD, Crowther GS, et al. In vitro susceptibility of Clostridium difficile to SMT19969 and comparators, as well as the killing kinetics and post-antibiotic effects of SMT19969 and comparators against C. difficile. J Antimicrob Chemother. 2015;70:1751–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Freeman J, Vernon J, Vickers RJ, Wilcox MH. Susceptibility of Clostridium difficile isolates of varying antimicrobial resistance phenotypes to SMT19969 and 11 comparators. Antimicrob Agents Chemother. 2016;60(1):689–92.

    CAS  PubMed  Google Scholar 

  42. Baines SD, Crowther GS, Freeman J, Todhunter S, Vickers RJ, Wilcox MH. SMT19969 as a treatment for Clostridium difficile infection: an assessment of antimicrobial activity using conventional susceptibility testing and an in vitro gut model. J Antimicrob Chemother. 2015;70:182–9.

    CAS  PubMed  Google Scholar 

  43. Weiss W, Pulse M, Vickers RJ. In vivo assessment of SMT19969 in a hamster model of Clostridium difficile infection. Antimicrob Agents Chemother. 2014;58(10):5714–8.

    PubMed  PubMed Central  Google Scholar 

  44. Sattar A, Thommes P, Payne L, Warn P, Vickers RJ. SMT19969 for Clostridium difficile infection (CDI): in vivo efficacy compared with fidaxomicin and vancomycin in the hamster model of CDI. J Antimicrob Chemother. 2015;70:1757–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Vickers RJ, Robinson N, Best E, Echols R, Tillotson G, Wilcox MH. A randomized phase 1 study to investigate safety, pharmacokinetics and impact on gut microbiota following single and multiple oral doses in healthy male participants of SMT19969, a novel agent for Clostridium difficile infections. BMC Infect Dis. 2015;15:91–100.

    PubMed  PubMed Central  Google Scholar 

  46. •• Thorpe CM, Kane AV, Chang J, Tai A, Vickers RJ, Snydman DR. Enhanced preservation of the human intestinal microbiota by ridinilazole, a novel Clostridium difficile-targeting antibacterial, compared to vancomycin. PLoS ONE. 2018. https://doi.org/10.1371/journal.pone.0199810Microbiome analysis of patients enrolled in ridinilazole’s CoDIFy phase II trial demonstrating less dysbiosis caused by ridinilazole when compared to vancomycin-treated patients.

  47. Leeds JA, Sachdeva M, Mullin S, Dzink-Fox J, LaMarche MJ. Mechanism of action of and mechanism of reduced susceptibility to the novel anti-Clostridium difficile compound LFF571. Antimicrob Agents Chemother. 2012;56(8):4463–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ting LSL, Praestgaard, Grunenberg N, Yang JC, Pertel P. A first-in-human, randomized, double-blind, placebo-controlled, single- and multiple-ascending oral dose study to assess the safety and tolerability of LFF571 in healthy volunteers. Antimicrob Agents Chemother. 2012;56(11):5946–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Mullane K, Lee C, Bressler A, Buitrago M, Weiss K, Dabovic K, et al. Multicenter, randomized clinical trial to compare the safety and efficacy of LFF571 and vancomycin for Clostridium difficile infections. Antimicrob Agents Chemother. 2015;59(3):1435–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Center for Infectious Disease Research and Policy. Novartis drops antibiotic development program. 2018; Available from: http://www.cidrap.umn.edu/news-perspective/2018/07/novartis-drops-antibiotic-development-program. Accessed March 18, 2020.

  51. Citron DM, Tyrrell KL, Merriam CV, Goldstein EJC. Comparative in vitro activities of LFF571 against Clostridium difficile and 630 other intestinal strains of aerobic and anaerobic bacteria. Antimicrob Agents Chemother. 2012;56(5):2493–503.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Trzasko A, Leeds JA, Praestgaard J, LaMarche MJ, McKenney D. Efficacy of LFF571 in a hamster model of Clostridium difficile infection. Antimicrob Agents Chemother. 2012;56(8):4459–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Bhansali SG, Mullane K, Ting LSL, Leeds JA, Dabovic K, Praestgaard J, et al. Pharmacokinetics of LFF571 and vancomycin in patients with moderate Clostridium difficile infections. Antimicrob Agents Chemother. 2015;59(3):1441–5.

    PubMed  PubMed Central  Google Scholar 

  54. Koo HL, Van JN, Zhao M, Ye X, Revell PA, Jiang ZD, et al. Real-time polymerase chain reaction detection of asymptomatic Clostridium difficile colonization and rising C. difficile-associated disease rates. Infect Control Hosp Epidemiol. 2014;35(6):667–73.

    PubMed  Google Scholar 

  55. Basséres E, Endres BT, Dotson KM, Alam MJ, Garey KW. Novel antibiotics in development to treat Clostridium difficile infection. Curr Opin Gastroenterol. 2017;33(1):1–7.

    PubMed  Google Scholar 

  56. Peláez T, Alcalá L, Alonso R, Martin-Lopez A, Garcia-Arias V, Marin M, et al. In vitro activity of ramoplanin against Clostridium difficile, including strains with reduced susceptibility to vancomycin or with resistance to metronidazole. Antimicrob Agents Chemother. 2005;49(3):1157–9.

    PubMed  PubMed Central  Google Scholar 

  57. Finegold SM, John SS, Vu AW, Li CM, Molitoris D, Song Y, et al. In vitro activity of ramoplanin and comparator drugs against anaerobic intestinal bacteria from the perspective of potential utility in pathology involving bowel flora. Anaerobe. 2004;10:205–11.

    CAS  PubMed  Google Scholar 

  58. Freeman J, Baines SD, Jabes D, Wilcox MH. Comparison of the efficacy of ramoplanin and vancomycin in both in vitro and in vivo models of clindamycin-induced Clostridium difficile infection. J Antimicrob Chemother. 2005;56:717–25.

    CAS  PubMed  Google Scholar 

  59. Kraus CN, Lyerly MW, Carman RJ. Ambush of Clostridium difficile spores by ramoplanin: activity in an in vitro model. Antimicrob Agents Chemother. 2015;59(5):2525–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. A single-centre, double-blind, placebo-controlled, study in healthy men to assess the safety and tolerability of single and repeated ascending doses of MGB-BP-3. https://ClinicalTrials.gov/show/NCT02518607. Accessed March 3, 2020.

  61. An exploratory, open labelled, phase IIa study to assess safety, tolerability and efficacy of incremental doses of MGB-BP-3 in patients with Clostridium difficile-associated diarrhea (CDAD). https://ClinicalTrials.gov/show/NCT03824795. Accessed March 3, 2020.

  62. MGB Biopharma. MGB Biopharma announces promising phase IIa clinical trial update for MGB-BP-3. 2019; Available from: https://www.mgb-biopharma.com/mgb-biopharma-announces-promising-phase-iia-clinical-trial-update-for-mgb-bp-3/. Accessed March 18, 2020.

  63. •• Dalhoff A, Rashid MU, Kapsner T, Panagiotidis G, Weintraub A, Nord CE. Analysis of effects of MCB3681, the antibacterially active substance of prodrug MCB3837, on human resident microflora as proof of principle. Clin Microbiol Infect. 2015;21:767.e1–4 Results from a phase I trial of DNV3837, a potential intravenous alternative to metronidazole in cases where a patient withC. difficileinfection (CDI) cannot tolerate oral medications.

    CAS  Google Scholar 

  64. Rashid MU, Dalhoff A, Backstrom T, Bjorkhem-Bergman L, Panagiotidis G, Weintraub A, et al. Ecological impact of MCB3837 on the normal human microbiota. Int J Antimicrob Agents. 2014;44:125–30.

    CAS  PubMed  Google Scholar 

  65. An exploratory, open-label, oligo-center study to evaluate the safety, efficacy, and pharmacokinetics of intravenous DNV3837 in subjects with Clostridium difficile infection. https://ClinicalTrials.gov/show/NCT03988855. Accessed March 15, 2020.

  66. Rashid MU, Dalhoff A, Weintraub A, Nord CE. In vitro activity of MCB3681 against Clostridium difficile strains. Anaerobe. 2014;28:216–9.

    CAS  PubMed  Google Scholar 

  67. Xu WC, Silverman MH, Yu XY, Wright G, Brown N. Discovery and development of DNA polymerase IIIC inhibitors to treat gram-positive infections. Bioorg Med Chem. 2019;27:3209–17.

    CAS  PubMed  Google Scholar 

  68. Garey KW, Kankam M, Mercier J, Yue CS, Ducharme M, Gonzales-Luna AJ, et al. A randomized, blinded, placebo- and vancomycin-controlled, first-in-human (FIH) study of the safety, pharmacokinetics (PK), and fecal microbiome effects of ACX-362E, a novel anti-clostridial DNA polymerase IIIC (polIIIC) inhibitor. Open Forum Infect Dis. 2019;6(Suppl 2):S995–6.

    PubMed Central  Google Scholar 

  69. ACX-362E [Ibezapolstat] for oral treatment of Clostridioides difficile infection: a phase 2a open-label segment followed by a phase 2b double-blind vancomycin-controlled segment. https://ClinicalTrials.gov/show/NCT04247542. Accessed March 17, 2020.

  70. Dvoskin S, Xu WC, Brown NC, Yanachkov IB, Yanachkova M, Wright GE. A novel agent effective against Clostridium difficile infection. Antimicrob Agents Chemother. 2012;56(3):1624–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Nayak SU, Griffiss JM, Blumer J, O’Riordan MA, Gray W, McKenzie R, et al. Safety, tolerability, systemic exposure, and metabolism of CRS3123, a methionyl-tRNA synthetase inhibitor developed for treatment of Clostridium difficile, in a phase 1 study. Antimicrob Agents Chemother. 2017;61(8):e02760–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Lomeli BK, Galbraith, Schettler J, Saviolakis GA, El-Amin W, Osborn B, et al. Multiple ascending dose phase 1 clinical study of safety, tolerability and pharmacokinetics of CRS3123, a narrow spectrum agent with minimal disruption of normal gut microbiota. Antimicrob Agents Chemother. 2019.

  73. Business Wire. Crestone, Inc. (Boulder) secures NIH funding for phase 2 clinical trial of novel antibiotic candidate. 2019; Available from: https://www.businesswire.com/news/home/20190912005834/en/Crestone-Boulder-Secures-NIH-Funding-Phase-2. Accessed March 19, 2020.

  74. Critchley IA, Green LS, Young CL, Bullard JM, Evans RJ, Price M, et al. Spectrum of activity and mode of action of REP3123, a new antibiotic to treat Clostridium difficile infections. J Antimicrob Chemother. 2009;63:954–63.

    CAS  PubMed  Google Scholar 

  75. Citron DM, Warren YA, Tyrrell KL, Merriam V, Goldstein EJC. Comparative in vitro activity of REP3123 against Clostridium difficile and other anaerobic intestinal bacteria. J Antimicrob Chemother. 2009;63:972–6.

    CAS  PubMed  Google Scholar 

  76. Ochsner UA, Bell SJ, O’Leary AL, Hoang T, Stone KC, Young CL, et al. Inhibitory effect of REP3123 on toxin and spore formation in Clostridium difficile, and in vivo efficacy in a hamster gastrointestinal infection model. J Antimicrob Chemother. 2009;63:964–71.

    CAS  PubMed  Google Scholar 

  77. Dennie J, Vandell AG, Inoue S, Gajee R, Pav J, Zhang G, et al. A phase I, single-ascending-dose study in healthy subjects to assess the safety, tolerability, pharmacokinetics, and pharmacodynamics of DS-2969b, a novel GyrB inhibitor. J Clin Pharm Ther. 2018;58(12):1557–65.

    CAS  Google Scholar 

  78. Vandell AG, Inoue S, Dennie J, Nagasawa Y, Gajee R, Pav J, et al. Phase 1 study to assess the safety, tolerability, pharmacokinetics, and pharmacodynamics of multiple oral doses of DS-2969b, a novel GyrB inhibitor, in healthy subjects. Antimicrob Agents Chemother. 2018;62(5):e02537–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Tyrrell KL, Citron DM, Merriam CV, Leoncio E, Goldstein EJC. In vitro activity of DS-2969b and comparator antimicrobial agents against Clostridioides (Clostridium) difficile, methicillin-resistant Staphylococcus aureus, and other anaerobic bacteria. Anaerobe. 2018;54:39–41.

    CAS  PubMed  Google Scholar 

  80. Mathur T, Barman TK, Kumar M, Singh D, Kumar R, Khera MK, et al. In vitro and in vivo activities of DS-2969b, a novel GyrB inhibitor, against Clostridium difficile. Antimicrob Agents Chemother. 2018;62(4):e02157–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Novartis Pharmaceuticals Co. Lamprene (clofazimine). East Hanover, NJ: Novartis Pharmaceuticals Co; 2019.

    Google Scholar 

  82. Reddy VM, Prensky W, VedBrat SS. In vitro activity of clofazimine and its analogs against Clostridium difficile. Poster presented at: American Society for Microbiology (ASM) Microbe; 2015 May 30-Jun 11; New Orleans, LA.

  83. Bannigan P, Durack E, Mathur H, Rea MC, Ross RP, Hudson SP. Delivery of a hydrophobic drug into the lower gastrointestinal system via an endogenous enzyme-mediated carrier mechanism: an in vitro study. Eur J Pharm Biopharm. 2018;133:12–9.

    CAS  PubMed  Google Scholar 

  84. Kersey RK, Prensky W, VedBrat SS. In vivo efficacy of clofazimine formulations in a hamster model of Clostridium difficile infection (CDI). Poster presented at: American Society for Microbiology (ASM) Microbe; 2018 Jun 6–11; Atlanta, GA.

  85. Rao S, Prestidge CA, Miesel L, Sweeney D, Shinabarger DL, Boulos RA. Preclinical development of ramizol, an antibiotic belonging to a new class, for the treatment of Clostridium difficile colitis. J Antibiot. 2016;69:879–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Wright L, Rao S, Thomas N, Boulos RA, Prestidge CA. Ramizol encapsulation into extended release PLGA micro- and nanoparticle systems for subcutaneous and intramuscular administration: in vitro and in vivo evaluation. Drug Dev Ind Pharm. 2018;44(9):1451–7.

    CAS  PubMed  Google Scholar 

  87. Wolfe C, Pagano P, Pillar CM, Shinabarger DL, Boulos RA. Comparison of the in vitro antibacterial activity of ramizol, fidaxomicin, vancomycin, and metronidazole against 100 clinical isolates of Clostridium difficile by broth microdilution. Diagn Microbiol Infect Dis. 2018;92:250–2.

    CAS  PubMed  Google Scholar 

  88. Sibley K, Chen J, Koetzner L, Mendes O, Kimzey A, Lansita J, et al. A 14-day repeat dose oral gavage range-finding study of a first-in-class CDI investigational antibiotic, in rats. Sci Rep. 2019;9:158. https://doi.org/10.1038/s41598-018-36690-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Musher DM, Logan N, Hamill RJ, Dupont HL, Lentnek A, Gupta A, et al. Nitazoxanide for the treatment of Clostridium difficile colitis. Clin Infect Dis. 2006;43(4):421–7.

    CAS  PubMed  Google Scholar 

  90. Musher DM, Logan N, Bressler AM, Johnson DP, Rossignol JF. Nitazoxanide versus vancomycin in Clostridium difficile infection: a randomized, double-blind study. Clin Infect Dis. 2009;48(4):e41–6.

    CAS  PubMed  Google Scholar 

  91. Wullt M, Odenholt I. A double-blind randomized controlled trial of fusidic acid and metronidazole for treatment of an initial episode of Clostridium difficile-associated diarrhoea. J Antimicrob Chemother. 2004;54(1):211–6.

    CAS  PubMed  Google Scholar 

  92. Norén T, Wullt M, Akerlund T, Back E, Odenholt I, Burman LG. Frequent emergence of resistance in Clostridium difficile during treatment of C. difficile-associated diarrhea with fusidic acid. Antimicrob Agents Chemother. 2006;50(9):3028–32.

    PubMed  PubMed Central  Google Scholar 

  93. de Lalla F, Nicolin R, Rinaldi E, Scarpellini P, Rigoli R, Manfrin V, et al. Prospective study of oral teicoplanin versus oral vancomycin for therapy of pseudomembranous colitis and Clostridium difficile-associated diarrhea. Antimicrob Agents Chemother. 1992;36:2192–1296.

    PubMed  PubMed Central  Google Scholar 

  94. Wenisch C, Parschalk B, Hasenhündl M, Hirschl AM, Graninger W. Comparison of vancomycin, teicoplanin, metronidazole, and fusidic acid for the treatment of Clostridium difficile-associated diarrhea. Clin Infect Dis. 1996;22:813–8.

    CAS  PubMed  Google Scholar 

  95. Jacobus NV, McDermott LA, Ruthazer R, Snydman DR. In vitro activities of tigecycline against the Bacteroides fragilis group. Antimicrob Agents Chemother. 2004;48(3):1034–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Betriu C, Culebras E, Gomez M, Rodriguez-Avail I, Picazo JJ. In vitro activity of tigecycline against Bacteroides species. J Antimicrob Chemother. 2005;56:349–52.

    CAS  PubMed  Google Scholar 

  97. Goldstein EJC, Citron DM, Merriam CV, Warren YA, Tyrrell KL, Fernandez HT. Comparative in vitro susceptibilities of 396 unusual anaerobic strains to tigecycline and eight other antimicrobial agents. Antimicrob Agents Chemother. 2006;50(10):3507–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Rodloff AC, Dowzicky MJ. In vitro activity of tigecycline and comparators against a European collection of anaerobes collected as part of the Tigecycline Evaluation and Surveillance Trial (T.E.S.T.) 2010–2016. Anaerobe. 2018;51:78–88.

    CAS  PubMed  Google Scholar 

  99. Baines SD, Saxton K, Freeman J, Wilcox MH. Tigecycline does not induce proliferation or cytotoxin production by epidemic Clostridium difficile strains in a human gut model. J Antimicrob Chemother. 2006;58:1062–5.

    CAS  PubMed  Google Scholar 

  100. Britt NS, Steed ME, Potter EM, Clough LA. Tigecycline for the treatment of severe and severe complicated Clostridium difficile infection. Infect Dis Ther. 2014;3:321–31.

    PubMed  PubMed Central  Google Scholar 

  101. Thomas A, Khan F, Uddin N, Wallace MR. Tigecycline for severe Clostridium difficile infection. Int J Infect Dis. 2014;26:171–2.

    CAS  PubMed  Google Scholar 

  102. Sutcliffe JA, O’Brien W, Fyfe C, Grossman TH. Antibacterial activity of eravacycline (TP-434), a novel fluorocycline, against hospital and community pathogens. Antimicrob Agents Chemother. 2013;57(11):5548–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Snydman DR, McDermott LA, Jacobus NV, Kerstein K, Grossman TH, Sutcliffe JA. Evaluation of the in vitro activity of eravacycline against a broad spectrum of recent clinical anaerobic isolates. Antimicrob Agents Chemother. 2018;62(5):e02206–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Stapert L, Wolfe C, Shinabarger D, Marra A, Pillar C. In vitro activities of omadacycline and comparators against anaerobic bacteria. Antimicrob Agents Chemother. 2018;62(4):e00047–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Moura IB, Buckley AM, Ewin D, Shearman S, Clark E, Wilcox MH, et al. Omadacycline gut microbiome exposure does not induce Clostridium difficile proliferation or toxin production in a model that simulates the proximal, medial, and distal human colon. Antimicrob Agents Chemother. 2019;63(2):e01581–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Debast SB, Bauer MP, Sanders IMJG, Wilcox MH, Kuijper EJ. Antimicrobial activity of LFF571 and three treatment agents against Clostridium difficile isolates collected for a pan-European survey in 2008: clinical and therapeutic implications. J Antimicrob Chemother. 2013;68(6):1305–11.

    CAS  PubMed  Google Scholar 

  107. Citron DM, Merriam CV, Tyrrell KL, Warren YA, Fernandez H, Goldstein EJC. In vitro activities of ramoplanin, teicoplanin, vancomycin, linezolid, bacitracin, and four other antimicrobials against intestinal anaerobic bacteria. Antimicrob Agents Chemother. 2003;47(7):2334–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Louie TJ, Emery J, Krulicki W, Byrne B, Mah M. OPT-80 eliminates Clostridium difficile and is sparing of Bacteroides species during treatment of C. difficile infection. Antimicrob Agents Chemother. 2009;53(1):261–3.

    CAS  PubMed  Google Scholar 

  109. Louie TJ, Cannon K, Byrne B, Emery J, Ward L, Eyben M, et al. Fidaxomicin preserves the intestinal microbiome during and after treatment of Clostridium difficile infection (CDI) and reduces both toxin reexpression and recurrence of CDI. Clin Infect Dis. 2012;55(Suppl 2):S132–42.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. J. Carlson or A. J. Gonzales-Luna.

Ethics declarations

Conflict of Interest

T.J.C. and A.J.G.-L. declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Antimicrobial Development and Drug Resistance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carlson, T.J., Gonzales-Luna, A.J. Antibiotic Treatment Pipeline for Clostridioides difficile Infection (CDI): A Wide Array of Narrow-Spectrum Agents. Curr Infect Dis Rep 22, 20 (2020). https://doi.org/10.1007/s11908-020-00730-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11908-020-00730-1

Keywords

Navigation