Skip to main content
Log in

Efficient production of gamma-aminobutyric acid using Escherichia coli by co-localization of glutamate synthase, glutamate decarboxylase, and GABA transporter

  • Metabolic Engineering and Synthetic Biology
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Gamma-aminobutyric acid (GABA) is an important bio-product, which is used in pharmaceutical formulations, nutritional supplements, and biopolymer monomer. The traditional GABA process involves the decarboxylation of glutamate. However, the direct production of GABA from glucose is a more efficient process. To construct the recombinant strains of Escherichia coli, a novel synthetic scaffold was introduced. By carrying out the co-localization of glutamate synthase, glutamate decarboxylase, and GABA transporter, we redirected the TCA cycle flux to GABA pathway. The genetically engineered E. coli strain produced 1.08 g/L of GABA from 10 g/L of initial glucose. Thus, with the introduction of a synthetic scaffold, we increased GABA production by 2.2-fold. The final GABA concentration was increased by 21.8 % by inactivating competing pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Conrado RJ, Wu GC, Boock JT, Xu H, Chen SY, Lebar T, Turnšek J, Tomšič N, Avbelj M, Gaber R, Koprivnjak T, Mori J, Glavnik V, Vovk I, Benčina M, Hodnik V, Anderluh G, Dueber JE, Jerala R, DeLisa MP (2012) DNA-guided assembly of biosynthetic pathways promotes improved catalytic efficiency. Nucleic Acids Res 40:1879–1889. doi:10.1093/nar/gkr888

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645. doi:10.1073/pnas.120163297

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Delebecque CJ, Lindner AB, Silver PA, Aldaye FA (2011) Organization of intracellular reactions with rationally designed RNA assemblies. Science 333:470–474. doi:10.1126/science.1206938

    Article  PubMed  CAS  Google Scholar 

  4. Dueber JE, Wu GC, Malmirchegini GR, Moon TS, Petzold CJ, Ullal AV, Prather KLJ, Keasling JD (2009) Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol 27:753–759. doi:10.1038/nbt.1557

    Article  PubMed  CAS  Google Scholar 

  5. Good MC, Zalatan JG, Lim WA (2011) Scaffold proteins: Hubs for controlling the flow of cellular information. Science 332:680–686. doi:10.1126/science.1198701

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Tinoco I Jr, Sauer K, Wang JC, Puglisi JD, Harbison G, Rovnyak D (2002) Physical chemistry: principles and applications in biological sciences, 4th edn. Prentice Hall, Upper Saddle River, New Jersey

    Google Scholar 

  7. Jung YK, Kim TY, Park SJ, Lee SY (2010) Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers. Biotechnol Bioeng 105:161–171. doi:10.1002/bit.22548

    Article  PubMed  CAS  Google Scholar 

  8. Kim AS, Kakalis LT, Abdul-Manan N, Liu GA, Rosen MK (2000) Autoinhibition and activation mechanisms of the Wiskott–Aldrich syndrome protein. Nature 404:151–158. doi:10.1038/35004513

    Article  PubMed  CAS  Google Scholar 

  9. Kim SH, Shin BH, Kim YH, Nam SW, Jeon SJ (2007) Cloning and expression of a full-length glutamate decarboxylase gene from Lactobacillus brevis BH2. Biotechnol Bioprocess Eng 12:707–712. doi:10.1007/BF02931089

    Article  Google Scholar 

  10. Moon TS, Dueber JE, Shiue E, Prather KLJ (2010) Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered E. coli. Metab Eng 12:298–305. doi:10.1016/j.ymben.2010.01.003

    Article  PubMed  CAS  Google Scholar 

  11. Nguyen JT, Turck CW, Cohen FE, Zuckermann RN, Lim WA (1998) Exploiting the basis of proline recognition by SH3 and WW Domains: design of N-substituted inhibitors. Science 282:2088–2092. doi:10.1126/science.282.5396.2088

    Article  PubMed  CAS  Google Scholar 

  12. Oh CH, Oh SH (2004) Effects of germinated brown rice extracts with enhanced levels of GABA on cancer cell proliferation and apoptosis. J Med Food 7(1):19–23. doi:10.1089/109662004322984653

    Article  PubMed  CAS  Google Scholar 

  13. Park KB, Ji GE, Park MS, Oh SH (2005) Expression of rice glutamate decarboxylase in Bifidobacterium Longum enhances γ-Aminobutyric acid production. Biotechnol Lett 27:1681–1684. doi:10.1007/s10529-005-2730-9

    Article  PubMed  CAS  Google Scholar 

  14. Park KB, Oh SH (2006) Enhancement of γ-aminobutyric acid production in Chungkukjang by applying a Bacillus subtilis strain expressing glutamate decarboxylase from Lactobacillus brevis. Biotechnol Lett 28:1459–1463. doi:10.1007/s10529-006-9112-9

    Article  PubMed  CAS  Google Scholar 

  15. Park SJ, Kim EY, Noh W, Oh YH, Kim HY, Song BK, Cho KM, Hong SH, Lee SH, Jegal J (2013) Synthesis of nylon 4 from gamma-aminobutyrate (GABA) produced by recombinant Escherichia coli. Bioprocess Biosyst Eng 36(7):885–892. doi:10.1007/s00449-012-0821-2

    Article  PubMed  CAS  Google Scholar 

  16. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  17. Saskiawan I (2008) Biosynthesis of polyamide 4, a biobased and biodegradable polymer. J Microbiol Indones 2(3):119–123

    Article  Google Scholar 

  18. Schultz J, Hoffmuuller U, Krause G, Ashurst J, Macias MJ, Schmieder P, Schneider-Mergener J, Oschkinat H (1998) Specific interactions between the syntrophin PDZ domain and voltage-gated sodium channels. Nat Struct Mol Biol 5:19–24. doi:10.1038/nsb0198-19

    Article  CAS  Google Scholar 

  19. Vo TD, Kim TW, Hong S (2012) Effects of glutamate decarboxylase and gamma-aminobutyric acid (GABA) transporter on the bioconversion of GABA in engineered Escherichia coli. Bioprocess Biosyst Eng 35:645–650. doi:10.1007/s00449-011-0634-8

    Article  PubMed  Google Scholar 

  20. Vo TD, Ko JS, Park SJ, Lee SH, Hong SH (2013) Efficient gamma-aminobutyric acid bioconversion by employing synthetic complex between glutamate decarboxylase and glutamate/GABA antiporter in engineered Escherichia coli. J Ind Microbiol Biotechnol 40:927–933. doi:10.1007/s10295-013-1289-z

    Article  PubMed  CAS  Google Scholar 

  21. Wu X, Knudsen B, Feller SM, Zheng J, Sali A, Cowburn D, Hanafusa H, Kuriyan J (1995) Structural basis for the specific interaction of lysine-containing proline-rich peptides with the N-terminal SH3 domain of c-Crk. Structure 3:215–226. doi:10.1016/S0969-2126(01)00151-4

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by grants from the Next-Generation BioGreen 21 Program (SSAC, Grant Number: PJ01111601), Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon Ho Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dung Pham, V., Somasundaram, S., Lee, S.H. et al. Efficient production of gamma-aminobutyric acid using Escherichia coli by co-localization of glutamate synthase, glutamate decarboxylase, and GABA transporter. J Ind Microbiol Biotechnol 43, 79–86 (2016). https://doi.org/10.1007/s10295-015-1712-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-015-1712-8

Keywords

Navigation