Skip to main content

Advertisement

Log in

Cancer in pathologically confirmed multiple system atrophy

  • Research Article
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Purpose

The aim of this study was to assess whether cancer occurs with increased frequency in multiple system atrophy (MSA). The pathological hallmark of MSA is glial cytoplasmic inclusions containing aggregated α-synuclein, and the related protein γ-synuclein correlates with invasive cancer. We investigated whether these two disorders are associated clinically.

Methods

Medical records of 320 patients with pathologically confirmed MSA seen between 1998 and 2022 were reviewed. After excluding those with insufficient medical histories, the remaining 269 and an equal number of controls matched for age and sex were queried for personal and family histories of cancer recorded on standardized questionnaires and in clinical histories. Additionally, age-adjusted rates of breast cancer were compared with US population incidence data.

Results

Of 269 cases in each group, 37 with MSA versus 45 of controls had a personal history of cancer. Reported cases of cancer in parents were 97 versus 104 and in siblings 31 versus 44 for MSA and controls, respectively. Of 134 female cases in each group, 14 MSA versus 10 controls had a personal history of breast cancer. The age-adjusted rate of breast cancer in MSA was 0.83%, as compared with 0.67% in controls and 2.0% in the US population. All comparisons were nonsignificant.

Conclusion

The evidence from this retrospective cohort found no significant clinical association of MSA with breast cancer or other cancers. These results do not exclude the possibility that knowledge about synuclein pathology at the molecular level in cancer may lead to future discoveries and potential therapeutic targets for MSA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Anonymized data will be shared based on the reasonable request from any qualified investigator.

Abbreviations

αSyn:

Alpha-synuclein

βSyn:

Beta-synuclein

γSyn:

Gamma-synuclein

CNS:

Central nervous system

DLB:

Dementia with Lewy bodies

MSA:

Multiple system atrophy

MSA-P:

MSA, predominantly parkinsonism

MSA-C:

MSA, predominantly cerebellar ataxia

PD:

Parkinson disease

References

  1. Wenning GK, Stankovic I, Vignatelli L et al. (2022) The movement disorder society criteria for the diagnosis of multiple system atrophy. Mov Disord 37(6):1131–1148. https://doi.org/10.1002/mds.29005

    Article  PubMed  PubMed Central  Google Scholar 

  2. Trojanowski JQ, Revesz T, Neuropathology Working Group on MSA (2007) Proposed neuropathological criteria for the post mortem diagnosis of multiple system atrophy. Neuropathol Appl Neurobiol 33(6):615–20. https://doi.org/10.1111/j.1365-2990.2007.00907.x

    Article  CAS  PubMed  Google Scholar 

  3. Dickson DW, Liu W, Hardy J et al. (1999) Widespread alterations of alpha-synuclein in multiple system atrophy. Am J Pathol 155(4):1241–1251. https://doi.org/10.1016/s0002-9440(10)65226-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Uversky VN, Li J, Souillac P et al. (2002) Biophysical properties of the synucleins and their propensities to fibrillate: inhibition of alpha-synuclein assembly by beta- and gamma-synucleins. J Biol Chem 277(14):11970–11978. https://doi.org/10.1074/jbc.M109541200

    Article  CAS  PubMed  Google Scholar 

  5. Miller KM, Mercado NM, Sortwell CE (2021) Synucleinopathy-associated pathogenesis in Parkinson’s disease and the potential for brain-derived neurotrophic factor [published online April 12, 2001]. NPJ Parkinson’s Dis 7(1):35. https://doi.org/10.1038/s41531-021-00179-6

    Article  Google Scholar 

  6. Kim WS, Kågedal K, Halliday GM (2014) Alpha-synuclein biology in Lewy body diseases [published online October 27, 2014]. Alzheimers Res Ther 6(5):73. https://doi.org/10.1186/s13195-014-0073-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sugier PE, Lucotte EA, Domenighetti C et al. (2023) Comprehensive unbiased risk factor assessment for genetics and environment in Parkinson’s disease (Courage-PD) consortium; Truong T ,Elbaz A. Investigation of shared genetic risk factors between Parkinson’s disease and cancers. Mov Disord. https://doi.org/10.1002/mds.29337

    Article  PubMed  Google Scholar 

  8. Zhang X, Guarin D, Mohammadzadehhonarvar N, Chen X, Gao X (2021) Parkinson’s disease and cancer: a systematic review and meta-analysis of over 17 million participants. BMJ Open 11(7):e046329. https://doi.org/10.1136/bmjopen-2020-046329. (Erratum in: BMJ Open. 2021 Sep 22;11(9):e046329corr1)

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mencke P, Hanss Z, Boussaad I et al. (2020) Bidirectional relation between Parkinson’s disease and glioblastoma multiforme. Front Neurol 11:898. https://doi.org/10.3389/fneur.2020.00898

    Article  PubMed  PubMed Central  Google Scholar 

  10. Filippou PS, Outeiro TF (2021) Cancer and Parkinson’s disease: common targets, emerging hopes. Mov Disord 36(2):340–346. https://doi.org/10.1002/mds.28425

    Article  PubMed  Google Scholar 

  11. Vanacore N (2005) Epidemiological evidence on multiple system atrophy. J Neural Transm (Vienna) 112(12):1605–1612. https://doi.org/10.1007/s00702-005-0380-7

    Article  CAS  PubMed  Google Scholar 

  12. Wüllner U, Schmitz-Hübsch T, Abele M, Antony G, Bauer P, Eggert K (2007) Features of probable multiple system atrophy patients identified among 4770 patients with parkinsonism enrolled in the multicentre registry of the German competence network on Parkinson’s disease. J Neural Transm (Vienna) 114(9):1161–1165. https://doi.org/10.1007/s00702-007-0746-0

    Article  PubMed  Google Scholar 

  13. Seo JH, Yong SW, Song SK, Lee JE, Sohn YH, Lee PH (2010) A case-control study of multiple system atrophy in Korean patients. Mov Disord 25(12):1953–1959. https://doi.org/10.1002/mds.23185

    Article  PubMed  Google Scholar 

  14. Köllensperger M, Geser F, Ndayisaba JP, EMSA-SG et al. (2010) Presentation, diagnosis, and management of multiple system atrophy in Europe: final analysis of the European multiple system atrophy registry. Mov Disord 25(15):2604–2612. https://doi.org/10.1002/mds.23192

    Article  PubMed  Google Scholar 

  15. Nozaki I, Kato-Motozaki Y, Ikeda T et al. (2014) Clinical features in association with neurodegenerative diseases and malignancies. Eur Neurol 71(3–4):99–105. https://doi.org/10.1159/000353995

    Article  CAS  PubMed  Google Scholar 

  16. Surguchov A (2008) Molecular and cellular biology of synucleins. Int Rev Cell Mol Biol 270:225–317. https://doi.org/10.1016/S1937-6448(08)01406-8

    Article  CAS  PubMed  Google Scholar 

  17. Carnazza KE, Komer LE, Xie YX et al. (2022) Synaptic vesicle binding of α-synuclein is modulated by β- and γ-synucleins. Cell Rep 39(2):110675. https://doi.org/10.1016/j.celrep.2022.110675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zheng Y, Cai H, Zhao J, Yu Z, Feng T (2022) Alpha-synuclein species in oral mucosa as potential biomarkers for multiple system atrophy. Front Aging Neurosci 14:1010064. https://doi.org/10.3389/fnagi.2022.1010064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim JY, Illigens BM, McCormick MP, Wang N, Gibbons CH (2019) Alpha-synuclein in skin nerve fibers as a biomarker for alpha-synucleinopathies. J Clin Neurol 15(2):135–142. https://doi.org/10.3988/jcn.2019.15.2.135

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kanda T, Tsukagoshi H, Oda M, Miyamoto K, Tanabe H (1996) Changes of unmyelinated nerve fibers in sural nerve in amyotrophic lateral sclerosis, Parkinson’s disease and multiple system atrophy. Acta Neuropathol 91(2):145–154. https://doi.org/10.1007/s004010050406

    Article  CAS  PubMed  Google Scholar 

  21. Rong Z, Shen F, Wang Y et al. (2021) Phosphorylated α-synuclein and phosphorylated tau-protein in sural nerves may contribute to differentiate Parkinson’s disease from multiple system atrophy and progressive supranuclear paralysis [published online May 19, 2021]. Neurosci Lett 756:135964. https://doi.org/10.1016/j.neulet.2021.135964

    Article  CAS  PubMed  Google Scholar 

  22. Barba L, Paolini Paoletti F, Bellomo G et al. (2022) Alpha and beta synucleins: from pathophysiology to clinical application as biomarkers. Mov Disord 37(4):669–683. https://doi.org/10.1002/mds.28941

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hayashi J, Carver JA (2022) β-synuclein: an enigmatic protein with diverse functionality [published online January 16, 2022]. Biomolecules 12(1):142. https://doi.org/10.3390/biom12010142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Surguchov A, Palazzo RE, Surgucheva I (2001) Gamma synuclein: subcellular localization in neuronal and non-neuronal cells and effect on signal transduction. Cell Motil Cytoskelet 49(4):218–228. https://doi.org/10.1002/cm.1035

    Article  CAS  Google Scholar 

  25. Sanjeev A, Mattaparthi VSK (2019) Computational study on the role of γ-synuclein in inhibiting the α-synuclein aggregation. Cent Nerv Syst Agents Med Chem 19(1):24–30. https://doi.org/10.2174/1871524918666181012160439

    Article  CAS  PubMed  Google Scholar 

  26. Surgucheva I, Sharov VS, Surguchov A (2012) γ-Synuclein: seeding of α-synuclein aggregation and transmission between cells. Biochemistry 51(23):4743–4754. https://doi.org/10.1021/bi300478w

    Article  CAS  PubMed  Google Scholar 

  27. He K, Wang P (2015) Unregulated long non-coding RNA-AK058003 promotes the proliferation, invasion and metastasis of breast cancer by regulating the expression levels of the γ-synuclein gene. Exp Ther Med 9(5):1727–1732. https://doi.org/10.3892/etm.2015.2323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tian L, Zhao Y, Truong MJ, Lagadec C, Bourette RP (2018) Synuclein gamma expression enhances radiation resistance of breast cancer cells. Oncotarget 9(44):27435–27447. https://doi.org/10.18632/oncotarget.25415

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ji H, Liu YE, Jia T et al. (1997) Identification of a breast cancer-specific gene, BCSG1, by direct differential cDNA sequencing. Cancer Res 57(4):759–764

    CAS  PubMed  Google Scholar 

  30. Guo J, Shou C, Meng L et al. (2007) Neuronal protein synuclein gamma predicts poor clinical outcome in breast cancer. Int J Cancer 121(6):1296–1305. https://doi.org/10.1002/ijc.22763

    Article  CAS  PubMed  Google Scholar 

  31. Wu K, Huang S, Zhu M et al. (2013) Expression of synuclein gamma indicates poor prognosis of triple-negative breast cancer [published online May 22, 2013]. Med Oncol 30(3):612. https://doi.org/10.1007/s12032-013-0612-x

    Article  CAS  PubMed  Google Scholar 

  32. Hsu CC, Su YF, Tsai KY et al. (2020) Gamma synuclein is a novel nicotine responsive protein in oral cancer malignancy [published online July 10, 2020]. Cancer Cell Int 20:300. https://doi.org/10.1186/s12935-020-01401-w. (Erratum in: Cancer Cell Int 2020 Aug 26;20:410)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fei J, Xiao C, Yang M, Zhou X, Gong P (2021) Inhibition of SNCG suppresses the proliferation of lung cancer cells induced by high glucose [published online December 14, 2020]. Mol Med Rep 23(2):138. https://doi.org/10.3892/mmr.2020.11777

    Article  CAS  PubMed  Google Scholar 

  34. Wang K, Shen Y, Xu J et al. (2020) Evaluation of synuclein-γ levels by novel monoclonal antibody in saliva and cancer tissues from oral squamous cell carcinoma patients. Neoplasma 67(3):707–713. https://doi.org/10.4149/neo_2020_190619N523

    Article  CAS  PubMed  Google Scholar 

  35. Bruening W, Giasson BI, Klein-Szanto AJ, Lee VM, Trojanowski JQ, Godwin AK (2000) Synucleins are expressed in the majority of breast and ovarian carcinomas and in preneoplastic lesions of the ovary. Cancer 88(9):2154–2163

    Article  CAS  PubMed  Google Scholar 

  36. Hu H, Sun L, Guo C et al. (2009) Tumor cell-microenvironment interaction models coupled with clinical validation reveal CCL2 and SNCG as two predictors of colorectal cancer hepatic metastasis. Clin Cancer Res 15(17):5485–5493. https://doi.org/10.1158/1078-0432.CCR-08-2491

    Article  CAS  PubMed  Google Scholar 

  37. Hibi T, Mori T, Fukuma M et al. (2009) Synuclein-gamma is closely involved in perineural invasion and distant metastasis in mouse models and is a novel prognostic factor in pancreatic cancer [published online April 7, 2009]. Clin Cancer Res 15(8):2864–2871. https://doi.org/10.1158/1078-0432.CCR-08-2946

    Article  CAS  PubMed  Google Scholar 

  38. Jellinger KA, Wenning GK, Stefanova N (2021) Is multiple system atrophy a prion-like disorder? [Published online September 18, 2021]. Int J Mol Sci 22(18):10093. https://doi.org/10.3390/ijms221810093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Miki Y, Foti SC, Asi YT et al. (2019) Improving diagnostic accuracy of multiple system atrophy: a clinicopathological study. Brain 142(9):2813–2827. https://doi.org/10.1093/brain/awz189

    Article  PubMed  Google Scholar 

  40. Koga S, Aoki N, Uitti RJ et al. (2015) When DLB, PD, and PSP masquerade as MSA: an autopsy study of 134 patients. Neurology 85(5):404–412. https://doi.org/10.1212/WNL.0000000000001807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. American Cancer Society. Lifetime risk of developing and dying from cancer, 2016–2018. https://www.cancer.org/content/dam/CRC/PDF/Public/509.00.pdf. Accessed 28 Feb 2023

  42. National Cancer Institute Surveillance, Epidemiology, and End Results Program. https://seer.cancer.gov. Accessed 28 Feb 2023

  43. Thal DR, Rüb U, Orantes M, Braak H (2002) Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology 58(12):1791–1800. https://doi.org/10.1212/wnl.58.12.1791

    Article  PubMed  Google Scholar 

  44. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259. https://doi.org/10.1007/BF00308809

    Article  CAS  PubMed  Google Scholar 

  45. Montine TJ, Phelps CH, Beach TG, National Institute on Aging; Alzheimer’s Association et al. (2012) National institute on aging-Alzheimer’s association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol 123(1):1–11. https://doi.org/10.1007/s00401-011-0910-3

    Article  CAS  PubMed  Google Scholar 

  46. Dogra A, Kumar J (2023) Biosynthesis of anticancer phytochemical compounds and their chemistry. Front Pharmacol 14:1136779. https://doi.org/10.3389/fphar.2023.1136779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Al-Yousef N, Shinwari Z, Al-Shahrani B, Al-Showimi M, Al-Moghrabi N (2020) Curcumin induces re expression of BRCA1 and suppression of γ synuclein by modulating DNA promoter methylation in breast cancer cell lines. Oncol Rep 43(3):827–838. https://doi.org/10.3892/or.2020.7473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xu B, Chen J, Liu Y (2022) Curcumin interacts with α-synuclein condensates to inhibit amyloid aggregation under phase separation. ACS Omega 7(34):30281–30290. https://doi.org/10.1021/acsomega.2c03534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zbarsky V, Datla KP, Parkar S, Rai DK, Aruoma OI, Dexter DT (2005) Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson’s disease. Free Radic Res 39(10):1119–25. https://doi.org/10.1080/10715760500233113

    Article  CAS  PubMed  Google Scholar 

  50. El Nebrisi E, Javed H, Ojha SK, Oz M, Shehab S (2020) Neuroprotective effect of curcumin on the nigrostriatal pathway in a 6-hydroxydopmine-induced rat model of Parkinson’s disease is mediated by α7-nicotinic receptors. Int J Mol Sci 21(19):7329. https://doi.org/10.3390/ijms21197329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nebrisi EE (2021) Neuroprotective activities of curcumin in Parkinson’s disease: a review of the literature. Int J Mol Sci 22(20):11248. https://doi.org/10.3390/ijms222011248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim TE, Newman AJ, Imberdis T et al. (2021) Excess membrane binding of monomeric alpha-, beta- and gamma-synuclein is invariably associated with inclusion formation and toxicity. Hum Mol Genet 30(23):2332–2346. https://doi.org/10.1093/hmg/ddab188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Galvin JE, Uryu K, Lee VM, Trojanowski JQ (1999) Axon pathology in Parkinson’s disease and Lewy body dementia hippocampus contains alpha-, beta-, and gamma-synuclein. Proc Natl Acad Sci USA 96(23):13450–13455. https://doi.org/10.1073/pnas.96.23.13450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Carnazza KE, Komer LE, Xie YX, Pineda A, Briano JA, Gao V, Na Y, Ramlall T, Buchman VL, Eliezer D, Sharma M, Burré J (2022) Synaptic vesicle binding of α-synuclein is modulated by β- and γ-synucleins. Cell Rep 39(2):110675. https://doi.org/10.1016/j.celrep.2022.110675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Surgucheva I, Newell KL, Burns J, Surguchov A (2014) New α- and γ-synuclein immunopathological lesions in human brain [published online September 11, 2014]. Acta Neuropathol Commun 2:132. https://doi.org/10.1186/s40478-014-0132-8

    Article  PubMed  PubMed Central  Google Scholar 

  56. Duda JE, Shah U, Arnold SE, Lee VM, Trojanowski JQ (1999) The expression of alpha-, beta-, and gamma-synucleins in olfactory mucosa from patients with and without neurodegenerative diseases. Exp Neurol 160(2):515–522. https://doi.org/10.1006/exnr.1999.7228

    Article  CAS  PubMed  Google Scholar 

  57. Nishioka K, Wider C, Vilariño-Güell C et al. (2010) Association of alpha-, beta-, and gamma-Synuclein with diffuse lewy body disease. Arch Neurol 67(8):970–5. https://doi.org/10.1001/archneurol.2010.177

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ninkina N, Peters O, Millership S, Salem H, van der Putten H, Buchman VL (2009) Gamma-synucleinopathy: neurodegeneration associated with overexpression of the mouse protein. Hum Mol Genet 18(10):1779–1794. https://doi.org/10.1093/hmg/ddp090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Min L, Zhang C, Ma R, Li X, Yuan H, Li Y, Chen R, Liu C, Guo J, Qu L, Shou C (2016) Overexpression of synuclein-γ predicts lack of benefit from radiotherapy for breast cancer patients. BMC Cancer 16(1):717

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lee SH, Kim YS, Han W et al. (2016) Tumor growth rate of invasive breast cancers during wait times for surgery assessed by ultrasonography [published online September 16, 2016]. Medicine (Baltimore) 95(37):e4874. https://doi.org/10.1097/MD.0000000000004874

    Article  PubMed  Google Scholar 

  61. Nakashima K, Uematsu T, Takahashi K et al. (2019) Does breast cancer growth rate really depend on tumor subtype? Measurement of tumor doubling time using serial ultrasonography between diagnosis and surgery. Breast Cancer 26(2):206–214. https://doi.org/10.1007/s12282-018-0914-0

    Article  PubMed  Google Scholar 

  62. Kaufmann H, Norcliffe-Kaufmann L, Palma JA, Autonomic Disorders Consortium et al. (2017) Natural history of pure autonomic failure: a United States prospective cohort. Ann Neurol 81(2):287–297. https://doi.org/10.1002/ana.24877

    Article  PubMed  PubMed Central  Google Scholar 

  63. Xia C, Postuma RB (2020) Diagnosing multiple system atrophy at the prodromal stage. Clin Auton Res 30(3):197–205. https://doi.org/10.1007/s10286-020-00682-5

    Article  PubMed  Google Scholar 

  64. McKay JH, Cheshire WP (2018) First symptoms in multiple system atrophy. Clin Auton Res 28(2):215–221. https://doi.org/10.1007/s10286-017-0500-0

    Article  PubMed  PubMed Central  Google Scholar 

  65. Sakakibara R, Sekiguchi Y, Panicker NJ et al. (2022) Female urinary retention progressing to possible multiple system atrophy-cerebellar form after 12 years. Intern Med. https://doi.org/10.2169/internalmedicine.8724-21

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are especially grateful to our patients with MSA who altruistically agreed to donate their brains after death so that advances in neuroscience might one day help other patients. We are inspired by their courage and join them in their hope for future breakthroughs.

Funding

This study was supported, in part, by National Institutes of Health Grant R01-NS89757. The Mayo Clinic brain bank is supported by Rainwater Charitable Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William P. Cheshire.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheshire, W.P., Koga, S., Tipton, P.W. et al. Cancer in pathologically confirmed multiple system atrophy. Clin Auton Res 33, 451–458 (2023). https://doi.org/10.1007/s10286-023-00946-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10286-023-00946-w

Keywords

Navigation