Skip to main content

Multiple System Atrophy

  • Chapter
  • First Online:
Neurourology
  • 1122 Accesses

Abstract

Multiple system atrophy (MSA) is an uncommon but well-recognized disease entity that both neurologists and urologists may encounter. The term MSA was introduced by Graham and Oppenheimer in 1969 to describe a disorder of unknown cause affecting extrapyramidal, cerebellar, and autonomic pathways [1] MSA includes the disorders previously called striatonigraldegeneration (SND) [2], sporadic olivopontocerebellar atrophy (OPCA) [3], and Shy–Drager syndrome [4]. The discovery in 1989 of glial cytoplasmic inclusions in the brains of patients with MSA [5] provided a pathological marker for the disorder (akin to Lewy bodies in idiopathic Parkinson’s disease (IPD)) and confirmed that SND, OPCA, and Shy–Drager syndrome are the same disease with differing clinical presentations. Immunocytochemistry showed that the glial cytoplasmic inclusions of MSA are ubiquitin-, tau-, and alpha-synuclein (SNCA)-positive, possibly representing a cytoskeletal alteration in glial cells that results in neuronal degeneration [6, 7]. SNCA is a presynaptic neuronal protein encoded by the SNCA gene located on chromosome 4. This protein appears to play a role in dopamine and other neurotransmitter metabolism, vesicle trafficking, modification of synaptic transmission, and regulation of membrane permeability. In contrast, pathologically increased expression and abnormal conformation of SNCA are reported to reduce neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis [6, 7] Familial occurrence is estimated to account for 1.6% of all cases, and data on such cases are being accumulated to identify candidate genes for this disorder, including SNCA, MAPT (microtubule-associated protein tau), etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Graham JG, Oppenheimer DR. Orthostatic hypotension and nicotinic sensitivity in a case of multiple system atrophy. J Neurol Neurosurg Psychiatry. 1969;32:28–34.

    Article  CAS  Google Scholar 

  2. Adams RD, van Bogaert L, Eecken HV. Striato–nigral degeneration. J Neuropathol Exp Neurol. 1964;23:584–608.

    CAS  PubMed  Google Scholar 

  3. Dejerine J, Thomas A. L’atrophie olivo-ponto-cérébelleuse. Nouvelle Iconographie de la Salpêtriére. 1900;13:30–70.

    Google Scholar 

  4. Shy GM, Drager GA. A neurological syndrome associated with orthostatic hypotension; a clinical-pathologic study. Arch Neurol. 1960;2:511–27.

    Article  CAS  Google Scholar 

  5. Papp MI, Kahn JE, Lantos PL. Glial cytoplasmic inclusions in the CNS of patients with multiple system atrophy (striatonigral degeneration, olivopontocerebellar atrophy and Shy–Drager syndrome). J Neurol Sci. 1989;94:79–100.

    Article  CAS  Google Scholar 

  6. Ahmed Z, Asi YT, Sailer A, et al. The neuropathology, pathophysiology and genetics of multiple system atrophy. Neuropathol Appl Neurobiol. 2012;38:4–24.

    Article  CAS  Google Scholar 

  7. Fernagut PO, Tison F. Animal models of multiple system atrophy. Neuroscience. 2012;211:77–82.

    Article  CAS  Google Scholar 

  8. Gilman S, Wenning GK, Low PA, et al. Second consensus statement on the diagnosis of multiple system atrophy. Neurology. 2008;71:670–6.

    Article  CAS  Google Scholar 

  9. The Consensus Committee of the American Autonomic Society and the American Academy of Neurology. Consensus statement on the definition of orthostatic hypotension, pure autonomic failure, and multiple system atrophy. Neurology. 1996;46:1470.

    Article  Google Scholar 

  10. Chandiramani VA, Palace J, Fowler CJ. How to recognize patients with parkinsonism who should not have urological surgery. Br J Urol. 1997;80:100–4.

    Article  CAS  Google Scholar 

  11. Yamamoto T, Sakakibara R, Uchiyama T, et al. Questionnaire-based assessment of pelvic organ dysfunction in multiple system atrophy. Mov Disord. 2009;24:972–8.

    Article  Google Scholar 

  12. Abrams P, Cardozo L, Fall M, et al. The standardisation of terminology of lower urinary tract function: report from the Standardisation Sub-committee of the International Continence Society. Neurourol Urodyn. 2002;21:167–78.

    Article  Google Scholar 

  13. Sakakibara R, Hattori T, Uchiyama T, et al. Urinary dysfunction and orthostatic hypotension in multiple system atrophy; which is the more common and earlier manifestation? J Neurol Neurosurg Psychiatry. 2000;68:65–9.

    Article  CAS  Google Scholar 

  14. Wenning GK, Ben Shlomo Y, Magalhaes M, et al. Clinical features and natural history of multiple system atrophy: an analysis of 100 cases. Brain. 1994;117:835–45.

    Article  Google Scholar 

  15. Gilman S, May SJ, Shults CW, et al. The North American Multiple System Atrophy Study Group. J Neural Transm. 2005;112:1687–94.

    Article  CAS  Google Scholar 

  16. Kirchhof K, Apostolidis AN, Mathias CJ, et al. Erectile and urinary dysfunction may be the presenting features in patients with multiple system atrophy: a retrospective study. Int J Impot Res. 2003;15:293–8.

    Article  CAS  Google Scholar 

  17. Christmas TJ, Chapple CR, Lees AJ, et al. Role of subcutaneous apomorphine in parkinsonian voiding dysfunction. Lancet. 1998;31:1451–3.

    Google Scholar 

  18. Fitzmaurice H, Fowler CJ, Richards D, et al. Micturition disturbance in Parkinson’s disease. Br J Urol. 1985;57:652–6.

    Article  CAS  Google Scholar 

  19. Sakakibara R, Hattori T, Uchiyama T, et al. Videourodynamicand sphincter motor unit potential analyses in Parkinson’s disease and multiple system atrophy. J Neurol Neurosurg Psychiatry. 2001;71:600–6.

    Article  CAS  Google Scholar 

  20. Berger Y, Salinas JM, Blaivas JG. Urodynamic differentiation of Parkinson disease and the Shy–Drager syndrome. Neurourol Urodynam. 1990;9:117–21.

    Article  Google Scholar 

  21. Stocchi F, Carbone A, Inghilleri M, et al. Urodynamic and neurophysiological evaluation in Parkinson’s disease and multiple system atrophy. J Neurol Neurosurg Psychiatry. 1997;62:507–11.

    Article  CAS  Google Scholar 

  22. Sand PK, Bowen LW, Ostergard DR. Uninhibited urethral relaxation; an unusual cause of incontinence. Obstet Gynecol. 1986;68:645–8.

    CAS  PubMed  Google Scholar 

  23. de Groat WC, Booth AM, Yoshimura N. Neurophysiology of micturition and its modification in animal models of human disease. In: Maggi CA, editor. The autonomic nervous system: nervous control of the urogenital system, vol. 3. London: Harwood Academic Publishers; 1993. p. 227–90.

    Google Scholar 

  24. Yoshimura N, Mizuta E, Kuno S, et al. The dopamine D1 receptor agonist SKF 38393 suppresses detrusor hyperreflexia in the monkey with parkinsonism induced by MPTP. Neuropharmacology. 1993;32:315–21.

    Article  CAS  Google Scholar 

  25. Sakakibara R, Fowler CJ. Cerebral control of bladder, bowel, and sexual function and effects of brain disease. In: Fowler CJ, editor. Neurology of bladder, bowel, and sexual function. Boston: Butterworth-Heinemann; 1999. p. 229–43.

    Google Scholar 

  26. Sakakibara R, Nakazawa K, Uchiyama T, et al. Micturition-related electrophysiological properties in the substantia nigra pars compacta and the ventral tegmental area in cats. Auton Neurosci. 2002;102:30–8.

    Article  Google Scholar 

  27. Yamamoto T, Sakakibara R, Hashimoto K, et al. Striatal dopamine level increases in the urinary storage phase in cats: an in vivomicrodialysis study. Neuroscience. 2005;135:299–303.

    Article  CAS  Google Scholar 

  28. Aswal BS, Berkley KJ, Hussain I, et al. Brain responses to changes in bladder volume and urge to void in healthy men. Brain. 2001;124:369–77.

    Article  Google Scholar 

  29. Kavia RBC, Dasgupta R, Fowler CJ. Functional imaging and the central control of the bladder. J Comp Neurol. 2005;493:27–32.

    Article  Google Scholar 

  30. Daniel SE. The neuropathology and neurochemistry of multiple system atrophy. In: Bannister R, Mathias CJ, editors. Autonomic failure. 3rd ed. Oxford: Oxford Medical Publications; 1992. p. 564–85.

    Google Scholar 

  31. Benarroch EE, Schmeichel AM. Depletion of corticotrophin-releasing factor neurons in the pontine micturition area in multiple system atrophy. Ann Neurol. 2001;50:640–5.

    Article  CAS  Google Scholar 

  32. Benarroch EE, Schmeichel AM, Low PA, et al. Involvement of medullary serotonergic groups in multiple system atrophy. Ann Neurol. 2004;55:418–22.

    Article  Google Scholar 

  33. Fujita T, Doi M, Ogata T, et al. Cerebral cortical pathology of sporadic olivopontocerebellar atrophy. J Neurol Sci. 1993;116:41–6.

    Article  CAS  Google Scholar 

  34. Andrew J, Nathan PW. Lesions of the anterior frontal lobes and disturbances of micturition and defaecation. Brain. 1964;87:233–62.

    Article  CAS  Google Scholar 

  35. Ito T, Sakakibara R, Nakazawa K, et al. Effects of electrical stimulation of the raphe area on the micturition reflex in cats. Neuroscience. 2006;142:1273–80.

    Article  CAS  Google Scholar 

  36. Nishizawa O, Ebina K, Sugaya K, et al. Effect of cerebellectomy on reflex micturition in the decerebrate dog as determined by urodynamic evaluation. Urol Int. 1989;44:152–6.

    Article  CAS  Google Scholar 

  37. Sakakibara R, Uchida Y, Uchiyama T, et al. Reduced cerebellar vermis activation in response to micturition in multiple system atrophy; 99mTc-labeled ECD SPECT study. Eur J Neurol. 2004;11:705–8.

    Article  CAS  Google Scholar 

  38. Ito T, Sakakibara R, Yasuda K, et al. Incomplete emptying and urinary retention in multiple system atrophy: when does it occur and how do we manage it? Mov Disord. 2006;21:816–23.

    Article  Google Scholar 

  39. Abrams P. Objective evaluation of bladder outlet obstruction. Br J Urol. 1995;76:11–5.

    Article  Google Scholar 

  40. Shäfer W. Principles and clinical application of advanced urodynamic analysis of voiding dysfunction. Urol Clin North Am. 1990;17:553–66.

    Google Scholar 

  41. Sakakibara R, Fowler CJ, Hattori T, et al. Pressure-flow study as an evaluating method of neurogenic urethral relaxation failure. J Auton Nerv Syst. 2000;80:85–8.

    Article  CAS  Google Scholar 

  42. Blaivas JG, Sinha HP, Zayed AAH, et al. Detrusor-sphincter dyssynergia; a detailed electromyographic study. J Urol. 1981;25:545–8.

    Article  Google Scholar 

  43. Yamamoto T, Sakakibara R, Uchiyama T, et al. Neurological diseases that cause detrusor hyperactivity with impaired contractile function. Neurourol Urodyn. 2006;25:356–60.

    Article  Google Scholar 

  44. Yamamoto T, Sakakibara R, Uchiyama T, et al. When is Onuf’s nucleus involved in multiple system atrophy? A sphincter electromyography study. J Neurol Neurosurg Psychiatry. 2005;76:1645–8.

    Article  CAS  Google Scholar 

  45. Sakuta M, Nakanishi T, Toyokura Y. Anal muscle electromyograms differ in amyotrophic lateral sclerosis and Shy–Drager syndrome. Neurology. 1978;28:1289–93.

    Article  CAS  Google Scholar 

  46. Sakakibara R, Uchiyama T, Yamanishi T, et al. SphincterEMGas a diagnostic tool in autonomic disorders. Clin Auton Res. 2009;19:20–31.

    Article  Google Scholar 

  47. Yamamoto T, Sakakibara R, Uchiyama T, et al. Receiver operating characteristic analysis ofsphincter electromyography for parkinsonian syndrome. Neurourol Urodyn. 2012;31:1128–34.

    Article  Google Scholar 

  48. Ozawa T, Oyanagi K, Tanaka H, et al. Suprachiasmal nucleus in a patient with multiple system atrophy with abnormal circadian rhythm of arginine vasopressin secretion into plasma. J Neurol Sci. 1998;154:116–21.

    Article  CAS  Google Scholar 

  49. Paviour DC, Williams DC, Fowler CJ, et al. Is sphincter electromyography a helpful investigation in thediagnosis of multiple system atrophy? A retrospective study with pathological diagnosis. Mov Disord. 2005;20:1425–30.

    Article  Google Scholar 

  50. Takahashi O, Sakakibara R, Tsunoyama K, et al. Do sacral/peripheral lesions contribute to detrusor-sphincter dyssynergia? Low Urin Tract Symptoms. 2012;4:126–9.

    Article  Google Scholar 

  51. Pramstaller PP, Wenning GK, Smith SJM, et al. Nerve conduction studies, skeletal muscle EMG, and sphincter EMG in multiple system atrophy. J Neurol Neurosurg Psychiatry. 1995;580:618–21.

    Article  Google Scholar 

  52. Morgan C, Nadelhaft I, de Groat WC. Location of bladder preganglionic neurones within the sacral parasympathetic nucleus of the cat. Neurosci Lett. 1979;14:189–94.

    Article  CAS  Google Scholar 

  53. Skehan AM, Downie JW, Awad SA. The pathophysiology of contractile activity in the chronic decentralized feline bladder. J Urol. 1993;149:1156–64.

    Article  CAS  Google Scholar 

  54. Lapides J, Friend CR, Ajemian EP, et al. Denervation supersensibility as a test for neurogenic bladder. Surg Gynecol Obstet. 1962;114:241–4.

    Google Scholar 

  55. Ozawa T, Tanaka H, Nakano R, et al. Nocturnal decrease in vasopressin secretion into plasma in patients with multiple system atrophy. J Neurol Neurosurg Psychiatry. 1999;67:542–5.

    Article  CAS  Google Scholar 

  56. Mathias CJ, Fosbraey P, DaCosta DF, et al. The effect of desmopressin on nocturnal polyuria, overnight weight loss, and morning postural hypotension in patients with autonomic failure. BMJ. 1986;293:35356.

    Article  Google Scholar 

  57. Wilcox CS, Aminoff MJ, Penn W. Basis of nocturnal polyuria in patients with autonomic failure. J Neurol Neurosurg Psychiatry. 1974;37:677.

    Article  CAS  Google Scholar 

  58. Donnellan CA, Fook L, McDonald P, et al. Oxybutynin and cognitive dysfunction. BMJ. 1997;315:1363–4.

    Article  CAS  Google Scholar 

  59. Sakakibara R, Hattori T, Uchiyama T, et al. Are alpha-blockers involved in lower urinary tract dysfunction in multiple system atrophy? A comparison of prazosin and moxisylyte. J Auton Nerv Syst. 2000;79:191–5.

    Article  CAS  Google Scholar 

  60. Sakakibara R, Uchiyama T, Asahina M, et al. Ameziniummetilsulfate, a sympathomimetic agent, may increase the risk of urinary retention in multiple system atrophy. Clin Auton Res. 2003;13:51–3.

    Article  Google Scholar 

  61. Schwinn DA. Novel role for alpha 1-adrenergic receptor subtypes in lower urinary tract symptoms. BJU Int. 2000;86:11–22.

    Article  CAS  Google Scholar 

  62. Yamanishi T, Yasuda K, Kamai T, et al. Combination of a cholinergic drug and an alpha-blocker is more effective than monotherapy for the treatment of voiding difficulty in patients with underactive detrusor. Int J Urol. 2004;11:88–96.

    Article  CAS  Google Scholar 

  63. Sandroni P, Opfer-Gehrking TL, Singer W, et al. Pyridostigmine for treatment of neurogenic orthostatic hypertension. A follow-up survey study. Clin Auton Res. 2005;15:51–3.

    Article  Google Scholar 

  64. Yamamoto T, Sakakibara R, Yamanaka Y, et al. Pyridostigmine in autonomic failure: can we treat postural hypotension and bladder dysfunction with one drug? Clin Auton Res. 2006;16:296–8.

    Article  Google Scholar 

  65. Yamamoto M. Pergolide improves neurogenic bladder in patients with Parkinson’s disease. Mov Disord. 1997;12:328.

    Article  Google Scholar 

  66. Kuno S, Mizutaa E, Yamasakia S, et al. Effects of pergolide on nocturia in Parkinson’s disease: three female cases selected from over 400 patients. Parkinsonism Relat Disord. 2004;10:181–7.

    Article  Google Scholar 

  67. Uchiyama T, Sakakibara R, Yamanishi T, et al. Short-term effect of l-dopa on the micturitional function in patients with Parkinson’s disease. Mov Disord. 2003;18:573–8.

    Article  Google Scholar 

  68. Brusa L, Petta F, Pisani A, et al. Central acute D2 stimulation worsens bladder function in patients with mild Parkinson’s disease. J Urol. 2006;175:202–6.

    Article  CAS  Google Scholar 

  69. Sakakibara R, Matsuda S, Uchiyama T, et al. The effect of intranasal desmopressin on nocturnal waking in urination in multiple system atrophy patients with nocturnal polyuria. Clin Auton Res. 2003;13:106–8.

    Article  Google Scholar 

  70. Uchiyama T, Sakakibara R, Asahina M, et al. Post-micturitional hypotension in patients with multiple system atrophy. J Neurol Neurosurg Psychiatry. 2005;76:186–90. http://www.ncbi.nlm.nih.gov/pubmed/?term=Coon%20EA%5BAuthor%5D&cauthor=true&cauthor_uid=26369944.

    Article  CAS  Google Scholar 

  71. Coon EA, Sletten DM, Suarez MD, et al. Clinical features and autonomic testing predict survival in multiple system atrophy. Brain. 2015;138:3623–31.

    Article  Google Scholar 

  72. Figueroa JJ, Singer W, Parsaik A, et al. Multiple system atrophy: prognostic indicators of survival. Mov Disord. 2014;29:1151–7.

    Article  Google Scholar 

  73. Sakakibara R, Panicker J, Finazzi-Agro E, et al. A guideline for the management of bladder dysfunction other gait disorders. Neurourol Urodyn. 2015.

    Google Scholar 

  74. Beck RO, Betts CD, Fowler CJ. Genitourinary dysfunction in multiple system atrophy: clinical features and treatment in 62 cases. J Urol. 1994;151:1336–41.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryuji Sakakibara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature B.V.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sakakibara, R. (2019). Multiple System Atrophy. In: Liao, L., Madersbacher, H. (eds) Neurourology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7509-0_65

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-7509-0_65

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-7507-6

  • Online ISBN: 978-94-017-7509-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics