Skip to main content

Advertisement

Log in

Influence of laser intensity and BaTiO3 content on the surface properties of 3YSZ

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

Zirconia-based dental implants are in direct contact with living tissues and any improvements in their bioactivity and adhesion to the tissues are highly welcome. In this study, different ratios of barium titanate (BT) were added to 3 mol% yttria-stabilized zirconia (3YSZ) through conventional sintering. The laser-texturing technique was also conducted to improve the biological performance of 3YSZ ceramics. The composition and the surface of the prepared composites were characterized by X-ray diffraction and scanning electron microscopy (SEM), respectively. The roughness and surface wettability of the composites were also measured. Furthermore, MC3T3-E1 pre-osteoblast cells were used for the in vitro experiments. Cell viability was evaluated using a commercial resazurin-based method. Morphology and cellular adhesion were observed using SEM. Based on the results, the laser texturing and the barium titanate content influenced the surface characteristics of the prepared composites. The laser-textured 3YSZ/7 mol% BT composites showed a lower water contact angle compared to the other samples, which indicated superior surface hydrophilicity. The cell viability and cell adhesion of 3YSZ/BT composites increased with the rise in the barium titanate content and laser power. An elongated cell morphology and apatite nucleation were also observed by the BT content. Overall, the laser-treated 3YSZ/5 and 7 mol% BT composites may be promising candidates in hard tissue repair due to their good cell response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Li Q, Li C, Wang Y. Effect of femtosecond laser ablate ultra-fine microgrooves on surface properties of dental zirconia materials. J Mech Behav Biomed Mater. 2022;134: 105361.

    Article  PubMed  CAS  Google Scholar 

  2. Shivakoti I, Kibria G, Cep R, Bahadur Pradhan B, Sharma A. Laser Surface Texturing for Biomedical Applications: A Review. Coatings. 2021;11:124.

    Article  CAS  Google Scholar 

  3. Han J, Zhang F, Van Meerbeek B, Vleugels J, Braem A, Castagne S. Laser surface texturing of zirconia-based ceramics for dental applications: a review. Mater Sci Eng C. 2021;123: 112034.

    Article  CAS  Google Scholar 

  4. Schünemann FH, Galárraga-Vinueza ME, Magini R, Fredel M, Silva F, Souza JCM, Zhange Y, Henriques B. Zirconia surface modifications for implant dentistry. Mater Sci Eng C. 2019;98:1294–305.

    Article  Google Scholar 

  5. Hallmann L, Ulmer P, Wille S, Polonskyi O, Köbel S, Trottenberg T, Bornholdt S, Haase F, Kersten H, Kern M. Effect of surface treatments on the properties and morphological change of dental zirconia. J Prosthet Dent. 2016;115(3):341–9.

    Article  PubMed  CAS  Google Scholar 

  6. Cunha W, Carvalho O, Henriques B, Silva FS, Özcan M, Souza JCM. Surface modifcation of zirconia dental implants by laser texturing. Lasers Med Sci. 2022;37:77–93.

    Article  PubMed  Google Scholar 

  7. Hosseini MH, Etemadi A, Gorjizadeh F. Zirconia Surface Treatment by Different Output Powers of Er: YAG Laser and Sandblasting: SEM Evaluation. Iran J Ortho. 2017;12(2): e7267.

    Google Scholar 

  8. Tiainen LK. Design, Manufacturing & Analysis of Smart Ceramics for Biomedical Applications: Zirconia functionalization with barium titanate. PhD thesis, University of Minho, 2021.

  9. Tandon B, Blaker JJ, Cartmell SH. Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair. Acta biomaterialia. 2018;73(-):1–20.

  10. Schult M, Buckow E, Seitz H. Experimental studies on 3d printing of barium titanate ceramics for medical applications. Current Directions in Biomedical Engineering. 2016;2(1):95–9.

    Article  Google Scholar 

  11. Fan B, Guo Z, Lia X, Lib S, Gao P, Xiao X, Wu J, Shen C, Jiao Y, Hou W. Electroactive barium titanate coated titanium scaffold improves osteogenesis and osseointegration with low-intensity pulsed ultrasound for large segmental bone defects. Bioactive Mater. 2020;5(4):1087–101.

    Article  Google Scholar 

  12. Seo S, Kishimoto A. Effect of polarization treatment on bending strength of barium titanate/zirconia composite. J Europ Ceram Soc. 2000;20:2427–31.

    Article  CAS  Google Scholar 

  13. Yang B, Chen XM, Liu XQ. Effect of BaTiO3 addition on structures and mechanical properties of 3Y-TZP ceramics. J Europ Ceram Soc. 2000;20:1153–8.

    Article  CAS  Google Scholar 

  14. Ghalandarzadeh A, Javadpour J, Majidian H, Ganjali M. The evaluation of prepared microstructure pattern by carbon-dioxide laser on zirconia-based ceramics for dental implant application: an in vitro study. Odontology. 2022;(https://doi.org/10.1007/s10266-022-00781-x. Online ahead of print).

  15. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27(15):2907–15.

    Article  PubMed  CAS  Google Scholar 

  16. Yusoff NH, Osman RAM, Idris MS, Muhsen KNDK, Nor NIM. Dielectric and structural analysis of hexagonal and tetragonal phase BaTiO3. AIP Conference Proceedings, AIP Publishing LLC, 2020, p. 020038.

  17. Carvalho A, Grenho L, Fernandes MH, Daskalova A, Trifonov A, Buchvarov I, Monteiro FJ. Femtosecond laser microstructuring of alumina toughened zirconia for surface functionalization of dental implants. Ceram Int. 2020;46(2):1383–9.

    Article  CAS  Google Scholar 

  18. Rab A, Siraj K, Irshad M, Latif A, Naz S, Bashir S, Rafique M. Laser irradiation effects on structural, morphological and mechanical properties of ZirCAD dental ceramic. Dig J Nanomater Biostructures. 2021;16:677–84.

    Article  Google Scholar 

  19. Kurtulmus-Yilmaz S, Aktore H. Effect of the application of surface treatments before and after sintering on the flexural strength, phase transformation and surface topography of zirconia. J Dent. 2018;72:29–38.

    Article  PubMed  CAS  Google Scholar 

  20. Roitero E, Ochoa M, Anglada M, Mücklich F, Jiménez-Piqué E. Low temperature degradation of laser patterned 3Y-TZP: Enhancement of resistance after thermal treatment. J Europ Ceram Soc. 2018;38(4):1742–9.

    Article  CAS  Google Scholar 

  21. Kazemi M, Saghafian H, Hooshyar M. Evaluating the impacts of laser process parameters on microstructure and microhardness of H13-TiC composite using the mathematical modelling. SN Appl Sci. 2020;2(1942).

  22. Pu Z, Jing X, Yang C, Wang F, Ehmann KF. Wettability modification of zirconia by laser surface texturing and silanization. Int J Appl Ceram Technol. 2020;17:2182–92.

    Article  CAS  Google Scholar 

  23. Wenzel RN. Resistance of solid surfaces to wetting by water. Ind Eng Chem. 1936;28(8):988–94.

    Article  CAS  Google Scholar 

  24. Moura CG, Pereira R, Buciumeanu M, Carvalho O, Bartolomeu F, Nascimento R, Silva FS. Effect of laser surface texturing on primary stability and surface properties of zirconia implants. Ceram Int. 2017;43(17):15227–36.

    Article  CAS  Google Scholar 

  25. Xu J, Ji M, Li L, Wu Y, Yu Q, Chen M. Improving wettability, antibacterial and tribological behaviors of zirconia ceramics through surface texturing. Ceram Int. 2022;48(3):3702–10.

    Article  CAS  Google Scholar 

  26. Katti DS, Vasita R, Shanmugam K. Improved biomaterials for tissue engineering applications: surface modification of polymers. Curr Top Med Chem. 2008;8(4):341–53.

    Article  Google Scholar 

  27. Hao L, Lawrence J, Chian KS. Effects of CO2 laser irradiation on the surface properties of magnesia-partially stabilised zirconia (MgO-PSZ) bioceramic and the subsequent improvements in human osteoblast cell adhesion. J Biomater Appl. 2004;19(2):81–105.

    Article  PubMed  CAS  Google Scholar 

  28. Taniguchi Y, Kakura K, Yamamoto K, Kido H, Yamazaki J. Accelerated osteogenic differentiation and bone formation on zirconia with surface grooves created with fiber laser irradiation. Clin Implant Dent Relat Res. 2016;18(5):883–94.

    Article  PubMed  Google Scholar 

  29. Kostov KG, Nishime TMC, Castro AHR, Toth A, Hein LRO. Surface modification of polymeric materials by cold atmospheric plasma jet. Appl Surf Sci. 2014;314:367–75.

    Article  ADS  CAS  Google Scholar 

  30. Zhu Y, Goh C, Shrestha A. Biomaterial properties modulating bone regeneration. Macromol Biosci. 2021;21(4):2000365.

    Article  CAS  Google Scholar 

  31. Le X, Poinern GEJ, Ali N, Berry CM, Fawcett D. Engineering a biocompatible scaffold with either micrometer or nanometer scale surface topography for promoting protein adsorption and cellular response. Int J Biomater. 2013;(2013).

  32. Li H, Wang X, Zhang J, Wang B, Breisch M, Hartmaier A, Rostotskyi I, Voznyy V, Liu Y. Experimental investigation of laser surface texturing and related biocompatibility of pure titanium. Int J Adv Manufactur Technol. 2022;1199–10:5993–6005.

    Article  Google Scholar 

  33. Nikkhah M, Edalat F, Manoucheri S, Khademhosseini A. Engineering microscale topographies to control the cell–substrate interface. Biomater. 2012;33(21):5230–46.

    Article  CAS  Google Scholar 

  34. Anselme K, Ploux L, Ponche A. Cell/material interfaces: influence of surface chemistry and surface topography on cell adhesion. J Adhesion Sci Technol. 2010;24(5):831–52.

    Article  CAS  Google Scholar 

  35. Liu X, Wang Y, He Y, Wang X, Zhang R, Bachhuka A, Madathiparambil Visalakshan R, Feng Q, Vasilev K. Synergistic Effect of Surface Chemistry and Surface Topography Gradient on Osteogenic/Adipogenic Differentiation of hMSCs. ACS Appl Mater Interface. 2021;13(26):30306–16.

    Article  CAS  Google Scholar 

  36. Zhou J, Zhang X, Sun J, Dang Z, Li J, Li X, Chen T. The effects of surface topography of nanostructure arrays on cell adhesion. Phys Chem Chem Phys. 2018;20(35):22946–51.

    Article  PubMed  CAS  Google Scholar 

  37. Al Qahtani WMS, Schille C, Spintzyk S, Al Qahtani MSA, Engel E, Geis-Gerstorfer J, Rupp F, Scheideler L. Effect of surface modification of zirconia on cell adhesion, metabolic activity and proliferation of human osteoblasts. 2017;62(1):75–87.

    CAS  Google Scholar 

  38. Trueba P, Giner M, Rodríguez Á, Beltrán AM, Amado JM, Montoya-Garcia MJ, Rodriguez-Albelo LM, Torres Y. Tribo-mechanical and cellular behavior of superficially modified porous titanium samples using femtosecond laser. Surf Coat Technol. 2021;422: 127555.

    Article  CAS  Google Scholar 

  39. Sirdeshmukh N, Dongre G. Laser micro & nano surface texturing for enhancing osseointegration and antimicrobial effect of biomaterials: A review. Mater Today: Proceedings. 2021;44:2348–55.

    CAS  Google Scholar 

  40. Behera RR, Hasan A, Sankar MR, Pandey LM. Laser cladding with HA and functionally graded TiO2-HA precursors on Ti–6Al–4V alloy for enhancing bioactivity and cyto-compatibility. Surf Coat Technol. 2018;352:420–36.

    Article  CAS  Google Scholar 

  41. Apablaza JA, Días FJ, Sánchez KG, Navarro P, Venegas C, Fuentes R. Analysis of the Chemical Composition and Morphological Characterization of Tissue Osseointegrated to a Dental Implant after 5 Years of Function. Int J Molecular Sci. 2022;23(16):8882.

    Article  Google Scholar 

  42. Vallet-Regí M. Ceramics for medical applications. J Chemical Soc Dalton Trans. 2001;2:97–108.

    Article  Google Scholar 

  43. Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dental mater. 2007;23(7):844–54.

    Article  Google Scholar 

  44. Chen X, Nouri A, Li Y, Lin J, Hodgson PD, Wen C. Effect of surface roughness of Ti, Zr, and TiZr on apatite precipitation from simulated body fluid. Biotechnol Bioeng. 2008;101(2):378–87.

    Article  PubMed  CAS  Google Scholar 

  45. Baino F, Yamaguchi S. The use of simulated body fluid (SBF) for assessing materials bioactivity in the context of tissue engineering: review and challenges. Biomimetics. 2020;5(4):57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Sun Y, Sun J, Wu X, Li Y, Li X, Li R, Wang T, Bi W, Cui W, Yu Y. Mechanism of zirconia microgroove surface structure for osseointegration. Mater Today. 2021;12: 100159.

    Article  CAS  Google Scholar 

  47. Han A, Tsoi JK, Lung CY, Matinlinna JP. An introduction of biological performance of zirconia with different surface characteristics: a review. Dent Mater J. 2020;39(4):523–30.

    Article  PubMed  CAS  Google Scholar 

  48. Hao L, Lawrence J, Chian K. Osteoblast cell adhesion on a laser modified zirconia based bioceramic. J Mater Sci Mater Med. 2005;16(8):719–26.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Financial support for this study was provided by Grant No. 391400010 from the Materials and Energy Research Center (MERC).

Funding

The work of Hudsa Majidian was supported by Materials and Energy Research Center, under Grant 391400010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hudsa Majidian.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majidian, H., Ghalandarzadeh, A., Kaboosi, M. et al. Influence of laser intensity and BaTiO3 content on the surface properties of 3YSZ. Odontology 112, 408–427 (2024). https://doi.org/10.1007/s10266-023-00853-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-023-00853-6

Keywords

Navigation