Skip to main content
Log in

Diffusion or bulk flow: how plasmodesmata facilitate pre-phloem transport of assimilates

  • JPR Symposium
  • Plasmodesmata: Function and Diversity in Plant Intercellular Communication
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Assimilates synthesized in the mesophyll of mature leaves move along the pre-phloem transport pathway to the bundle sheath of the minor veins from which they are loaded into the phloem. The present review discusses the most probable driving force(s) for the pre-phloem pathway, diffusion down the concentration gradient or bulk flow along a pressure gradient. The driving force seems to depend on the mode of phloem loading. In a majority of plant species phloem loading is a thermodynamically active process, involving the activity of membrane transporters in the sieve-element companion cell complex. Since assimilate movement includes an apoplasmic step, this mode is called apoplasmic loading. Well established is also the polymer-trap loading mode, where the phloem-transport sugars are raffinose-family oligomers in herbaceous plants. Also this mode depends on the investment of energy, here for sugar oligomerization, and leads to a high sugar accumulation in the phloem, even though the phloem is not symplasmically isolated, but well coupled by plasmodesmata (PD). Hence the mode polymer-trap mode is also designated active symplasmic loading. For woody angiosperms and gymnosperms an alternate loading mode is currently matter of discussion, called passive symplasmic loading. Based on the limited material available, this review compares the different loading modes and suggests that diffusion is the driving force in apoplasmic loaders, while bulk flow plays an increasing role in plants having a continuous symplasmic pathway from mesophyll to sieve elements. Crucial for the driving force is the question where water enters the pre-phloem pathway. Surprisingly, the role of PD in water movement has not been addressed so far appropriately. Modeling of assimilate and water fluxes indicates that in symplasmic loaders a considerable part of water flux happens through the PD between bundle sheath and phloem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amiard V, Demmig-Adams B, Mueh KE, Turgeon R, Combs AF, Adams WW (2007) Role of light and jasmonic acid signaling in regulating foliar phloem cell wall ingrowth development. New Phytol 173:722–731. doi:10.1111/j.1469-8137.2006.01954.x

    Article  CAS  PubMed  Google Scholar 

  • Andriunas FA, Zhang HM, Xia X, Patrick JW, Offler CE (2013) Intersection of transfer cells with phloem biology-broad evolutionary trends, function, and induction. Frontiers in plant science 4. doi:10.3389/Fpls.2013.00221

  • Batashev DR, Pakhomova MV, Razumovskaya AV, Voitsekhovskaja OV, Gamalei YV (2013) Cytology of the minor-vein phloem in 320 species from the subclass Asteridae suggests a high diversity of phloem-loading modes. Frontiers in plant science 4. doi:10.3389/Fpls.2013.00312

  • Becker P, Tyree MT, Tsuda M (1999) Hydraulic conductances of angiosperms versus conifers: similar transport sufficiency at the whole-plant level. Tree Physiol 19:445–452

    Article  PubMed  Google Scholar 

  • Beebe DU, Russin WA (1999) Plasmodesmata in the phloem-loading pathway. In: van Bel AJE, Van Kesteren WP (eds) Plasmodesmata. Springer Berlin, pp 261–293. doi:10.1007/978-3-642-60035-7_15

  • Behnke HD (1990) Cycads and gnetophytes. In: Behnke HD, Sjolund RD (eds) sieve elements. Springer Berlin, pp 89–101. doi:10.1007/978-3-642-74445-7_5

  • Ben Baaziz K, Lopez D, Rabot A, Combes D, Gousset A, Bouzid S, Cochard H, Sakr S, Venisse JS (2012) Light-mediated K-leaf induction and contribution of both the PIP1 s and PIP2 s aquaporins in five tree species: walnut (Juglans regia) case study. Tree Physiol 32:423–434. doi:10.1093/treephys/tps022

    Article  CAS  Google Scholar 

  • Botha CEJ, Cross RHM, Liu L (2007) Comparative Structure of Specialised Monocotyledonous Leaf Blade Plasmodesmata. In: Plasmodesmata. Blackwell, pp 73–89. doi:10.1002/9780470988572.ch4

  • Burch-Smith TM, Stonebloom S, Xu M, Zambryski PC (2011) Plasmodesmata during development: re-examination of the importance of primary, secondary, and branched plasmodesmata structure versus function. Protoplasma 248:61–74. doi:10.1007/s00709-010-0252-3

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Canny MJ (1993) Transfusion tissue of pine needles as a site of retrieval of solutes from the transpiration stream. New Phytol 123:227–232

    Article  Google Scholar 

  • Carde JP (1973) Transfer tissue (strasburger cells) in needles of maritime pine (Pinus pinaster Ait).1. Histology and ultrastructural study of grown up tissue. J Microsc Oxf 17:65–88

    Google Scholar 

  • Chen LQ, Qu XQ, Hou BH, Sosso D, Osorio S, Fernie AR, Frommer WB (2012) Sucrose efflux mediated by sweet proteins as a key step for phloem transport. Science 335:207–211. doi:10.1126/science.1213351

    Article  CAS  PubMed  Google Scholar 

  • Cui H, Kong D, Liu X, Hao Y (2014) SCARECROW, SCR-LIKE 23 and SHORT-ROOT control bundle sheath cell fate and function in Arabidopsis thaliana. Plant J 78:319–327. doi:10.1111/tpj.12470

    Article  CAS  PubMed  Google Scholar 

  • Davidson A, Keller F, Turgeon R (2011) Phloem loading, plant growth form, and climate. Protoplasma 248:153–163. doi:10.1007/s00709-010-0240-7

    Article  CAS  PubMed  Google Scholar 

  • Dölger J, Rademaker H, Liesche J, Schulz A, Bohr T (2014) Diffusion and bulk flow in phloem loading: a theoretical analysis of the polymer trap mechanism for sugar transport in plants. Phys Rev E 90:042704

    Article  Google Scholar 

  • Ehlers K, Kollmann R (2001) Primary and secondary plasmodesmata: structure, origin, and functioning. Protoplasma 216:1–30. doi:10.1007/Bf02680127

    Article  CAS  PubMed  Google Scholar 

  • Ehlers K, van Bel AJE (2010) Dynamics of plasmodesmal connectivity in successive interfaces of the cambial zone. Planta 231:371–385. doi:10.1007/s00425-009-1046-8

    Article  CAS  PubMed  Google Scholar 

  • Faulkner C, Akman O, Bell K, Jeffree C, Oparka K (2008a) Peeking into pit fields - A new model of secondary plasmodesmata formation. Comp Biochem Phys A 150:S140–S141. doi:10.1016/j.cbpa.2008.04.347

    Article  Google Scholar 

  • Faulkner C, Akman OE, Bell K, Jeffree C, Oparka K (2008b) Peeking into pit fields: a multiple twinning model of secondary plasmodesmata formation in tobacco. Plant Cell 20:1504–1518. doi:10.1105/tpc.107.056903

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fraysse LC, Wells B, McCann MC, Kjellbom P (2005) Specific plasma membrane aquaporins of the PIP1 subfamily are expressed in sieve elements and guard cells. Biol Cell 97:519–534

    Article  CAS  PubMed  Google Scholar 

  • Fu QS, Cheng LL, Guo YD, Turgeon R (2011) Phloem loading strategies and water relations in trees and herbaceous plants. Plant Physiol 157:1518–1527. doi:10.1104/pp.111.184820

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fuchs M, van Bel AJ, Ehlers K (2011) Do symplasmic networks in cambial zones correspond with secondary growth patterns? Protoplasma 248:141–151. doi:10.1007/s00709-010-0208-7

    Article  PubMed  Google Scholar 

  • Gilbertson RL, Rojas MR, Lucas WJ (2007) Plasmodesmata and phloem: conduits for local and long-distance signaling. In: Plasmodesmata. Blackwell, pp 162–187. doi:10.1002/9780470988572.ch8

  • Glockmann C, Kollmann R (1996) Structure and development of cell connections in the phloem of Metasequoia glyptostroboides needles.1. Ultrastructural aspects of modified primary plasmodesmata in Strasburger cells. Protoplasma 193:191–203. doi:10.1007/Bf01276645

    Article  Google Scholar 

  • Haritatos E, Keller F, Turgeon R (1996) Raffinose oligosaccharide concentrations measured in individual cell and tissue types in Cucumis melo L leaves: implications for phloem loading. Planta 198:614–622

    Article  CAS  Google Scholar 

  • Haritatos E, Ayre BG, Turgeon R (2000a) Identification of phloem involved in assimilate loading in leaves by the activity of the galactinol synthase promoter. Plant Physiol 123:929–937. doi:10.1104/Pp.123.3.929

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haritatos E, Medville R, Turgeon R (2000b) Minor vein structure and sugar transport in Arabidopsis thaliana. Planta 211:105–111. doi:10.1007/s004250000268

    Article  CAS  PubMed  Google Scholar 

  • Heinen RB, Ye Q, Chaumont F (2009) Role of aquaporins in leaf physiology. J Exp Bot 60:2971–2985. doi:10.1093/Jxb/Erp171

    Article  CAS  PubMed  Google Scholar 

  • Holthaus U, Schmitz K (1991) Distribution and immunolocalization of stachyose synthase in Cucumis melo L. Planta 185:479–486

    Article  CAS  PubMed  Google Scholar 

  • Jensen KH, Liesche J, Bohr T, Schulz A (2012) Universality of phloem transport in seed plants. Plant Cell Environ 35:1065–1076. doi:10.1111/j.1365-3040.2011.02472.x

    Article  CAS  PubMed  Google Scholar 

  • Kim I, Zambryski PC (2005) Cell-to-cell communication via plasmodesmata during arabidopsis embryogenesis. Curr Opin Plant Biol 8:593–599. doi:10.1016/j.pbi.2005.09.013

    Article  CAS  PubMed  Google Scholar 

  • Kim I, Kobayashi K, Cho E, Zambryski PC (2005) Subdomains for transport via plasmodesmata corresponding to the apical-basal axis are established during Arabidopsis embryogenesis. P Natl Acad Sci USA 102:11945–11950. doi:10.1073/pnas.0505622102

    Article  CAS  Google Scholar 

  • Kollmann R, Glockmann C (1999) Multimorphology and nomenclature of plasmodesmata in higher plants. In: van Bel AJE, Van Kesteren WP (eds) Plasmodesmata. Springer, Berlin, pp 149–172. doi:10.1007/978-3-642-60035-7_10

  • Krull R (1960) Untersuchungen über den Bau und die Entwicklung der Plasmodesmen im Rindenparenchym von Viscum album. Planta 55:598–629. doi:10.1007/Bf01884804

    Article  Google Scholar 

  • Laur J, Hacke UG (2014) Exploring Picea glauca aquaporins in the context of needle water uptake and xylem refilling. New Phytol 203:388–400. doi:10.1111/Nph.12806

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Chung GC, Zwiazek JJ (2009) Effects of irradiance on cell water relations in leaf bundle sheath cells of wild-type and transgenic tobacco (Nicotiana tabacum) plants overexpressing aquaporins. Plant Sci 176:248–255. doi:10.1016/j.plantsci.2008.10.013

    Article  CAS  Google Scholar 

  • Liesche J, Schulz A (2012) In vivo quantification of cell coupling in plants with different phloem-loading strategies. Plant Physiol 159:355–365. doi:10.1104/pp.112.195115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liesche J, Schulz A (2013) Modeling the parameters for plasmodesmal sugar filtering in active symplasmic phloem loaders. Frontiers in plant science 4. doi:10.3389/Fpls.2013.00207

  • Liesche J, Martens HJ, Schulz A (2011) Symplasmic transport and phloem loading in gymnosperm leaves. Protoplasma 248:181–190. doi:10.1007/s00709-010-0239-0

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lohaus G, Pennewiss K, Sattelmacher B, Hussmann M, Muehling KH (2001) Is the infiltration-centrifugation technique appropriate for the isolation of apoplastic fluid? A critical evaluation with different plant species. Physiol Plant 111:457–465. doi:10.1034/j.1399-3054.2001.1110405.x

    Article  CAS  PubMed  Google Scholar 

  • Lopez D, Venisse JS, Fumanal B, Chaumont F, Guillot E, Daniels MJ, Cochard H, Julien JL, Gousset-Dupont A (2013) Aquaporins and leaf hydraulics: poplar sheds new light. Plant Cell Physiol 54:1963–1975. doi:10.1093/Pcp/Pct135

    Article  CAS  PubMed  Google Scholar 

  • Lucas WJ, Groover A, Lichtenberger R, Furuta K, Yadav SR, Helariutta Y et al (2013) The plant vascular system: evolution, development and functions. J Integr Plant Biol 55:294–388. doi:10.1111/Jipb.12041

    Article  CAS  PubMed  Google Scholar 

  • Münch E (1930) Die Stoffbewegungen in der Pflanze. Gustav Fischer, Jena

    Google Scholar 

  • Öner-Sieben S, Lohaus G (2014) Apoplastic and symplastic phloem loading in Quercus robur and Fraxinus excelsior. J Exp Bot 65:1905–1916. doi:10.1093/Jxb/Eru066

    Article  PubMed Central  PubMed  Google Scholar 

  • Oparka KJ, Prior DAM (1992) Direct evidence for pressure-generated closure of plasmodesmata. Plant J 2:741–750. doi:10.1111/j.1365-313X.1992.tb00143.x

    Article  Google Scholar 

  • Orlich G, Hofbrückl M, Schulz A (1998) A symplasmic flow of sucrose contributes to phloem loading in Ricinus cotyledons. Planta 206:108–116. doi:10.1007/s004250050380

    Article  Google Scholar 

  • Palevitz BA, Hepler PK (1985) Changes in dye coupling of stomatal cells of Allium and Commelina demonstrated by microinjection of lucifer yellow. Planta 164:473–479. doi:10.1007/Bf00395962

    Article  CAS  PubMed  Google Scholar 

  • Patrick JW (2012) Fundamentals of phloem transport physiology. In: Thompson GA, van Bel AJE (eds) Phloem: molecular cell biology, systemic communication, biotic interactions. Wiley, pp 30–59. doi:10.1002/9781118382806.ch3

  • Pina A, Errea P, Schulz A, Martens HJ (2009) Cell-to-cell transport through plasmodesmata in tree callus cultures. Tree Physiol 29:809–818. doi:10.1093/treephys/tpp025

    Article  PubMed  Google Scholar 

  • Pommerrenig B, Papini-Terzi FS, Sauer N (2007) Differential regulation of sorbitol and sucrose loading into the phloem of plantago major in response to salt stress. Plant Physiol 144:1029–1038. doi:10.1104/pp.106.089151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reidel EJ, Rennie EA, Amiard V, Cheng L, Turgeon R (2009) Phloem loading strategies in three plant species that transport sugar alcohols. Plant Physiol 149:1601–1608. doi:10.1104/pp.108.134791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rennie EA, Turgeon R (2009) A comprehensive picture of phloem loading strategies. P Natl Acad Sci USA 106:14162–14167. doi:10.1073/pnas.0902279106

    Article  CAS  Google Scholar 

  • Schmitt B, Stadler R, Sauer N (2008) Immunolocalization of solanaceous SUT1 proteins in companion cells and xylem parenchyma: new perspectives for phloem loading and transport. Plant Physiol 148:187–199. doi:10.1104/pp.108.120410

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schmitz K, Cuypers B, Moll M (1987) Pathway of assimilate transfer between mesophyll-cells and minor veins in leaves of cucumis-melo L. Planta 171:19–29. doi:10.1007/Bf00395064

    Article  CAS  PubMed  Google Scholar 

  • Schobert C, Lucas W, Franceschi V, Frommer W (2000) Intercellular transport and phloem loading of sucrose, oligosaccharides and amino acids. In: Leegood R, Sharkey T, von Caemmerer S (eds) Photosynthesis, vol 9. Advances in photosynthesis and respiration. Springer, Netherlands, pp 249–274. doi:10.1007/0-306-48137-5_11

  • Schulz A (1990) Conifers. In: Behnke HD, Sjolund RD (eds) Sieve elements. Springer, Berlin, pp 63–88. doi:10.1007/978-3-642-74445-7_4

  • Schulz A (1992) Living sieve cells of conifers as visualized by confocal, laser-scanning fluorescence microscopy. Protoplasma 166:153–164. doi:10.1007/bf01322778

    Article  Google Scholar 

  • Schulz A (1998) Phloem. Structure Related to Function. In: Behnke HD, Esser K, Kadereit JW, Lüttge U, Runge M (eds) Progress in Botany, vol 59. Progress in botany. Springer, Berlin, pp 429–475. doi:10.1007/978-3-642-80446-5_16

  • Schulz A (2005) Role of Plasmodesmata in solute loading and unloading. In: Oparka KJ (ed) Plasmodesmata. Annual plant reviews, vol 18. Blackwell, Oxford, pp 135–161

  • Schulz A, Kühn C, Riesmeier JW, Frommer WR (1998) Ultrastructural effects in potato leaves due to antisense-inhibition of the sucrose transporter indicate an apoplasmic mode of phloem loading. Planta 206:533–543. doi:10.1007/s004250050430

    Article  CAS  Google Scholar 

  • Slewinski TL, Anderson AA, Zhang CK, Turgeon R (2012) Scarecrow plays a role in establishing kranz anatomy in maize leaves. Plant Cell Physiol 53:2030–2037. doi:10.1093/Pcp/Pcs147

    Article  CAS  PubMed  Google Scholar 

  • Slewinski TL, Zhang CK, Turgeon R (2013) Structural and functional heterogeneity in phloem loading and transport. Frontiers in plant science 4. doi:10.3389/Fpls.2013.00244

  • Steinberg G, Kollmann R (1994) A quantitative-analysis of the interspecific plasmodesmata in the non-division walls of the plant chimera Laburnocytisus adamii (Poit) schneid. Planta 192:75–83

    Google Scholar 

  • Tan QM, Grennan AK, Pelissier HC, Rentsch D, Tegeder M (2008) Characterization and expression of French bean amino acid transporter PvAAP1. Plant Sci 174:348–356. doi:10.1016/j.plantsci.2007.12.008

    Article  CAS  Google Scholar 

  • Tegeder M (2014) Transporters involved in source to sink partitioning of amino acids and ureides: opportunities for crop improvement. J Exp Bot 65:1865–1878. doi:10.1093/Jxb/Eru012

    Article  CAS  PubMed  Google Scholar 

  • Thompson GA, Schulz A (1999) Macromolecular trafficking in the phloem. Trends Plant Sci 4:354–360. doi:10.1016/s1360-1385(99)01463-6

    Article  PubMed  Google Scholar 

  • Turgeon R (1996) Phloem loading and plasmodesmata. Trends Plant Sci 1:418–423. doi:10.1016/S1360-1385(96)10045-5

    Article  Google Scholar 

  • Turgeon R, Beebe DU (1991) The evidence for symplastic Phloem loading. Plant Physiol 96:349–354

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Turgeon R, Gowan E (1990) Phloem loading in coleus blumei in the absence of carrier-mediated uptake of export sugar from the apoplast. Plant Physiol 94:1244–1249. doi:10.1104/Pp.94.3.1244

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Turgeon R, Hepler PK (1989) Symplastic continuity between mesophyll and companion cells in minor veins of mature Cucurbita pepo L. leaves. Planta 179:24–31. doi:10.1007/BF00395767

    Article  CAS  PubMed  Google Scholar 

  • Turgeon R, Medville R (1998) The absence of phloem loading in willow leaves. P Natl Acad Sci USA 95:12055–12060. doi:10.1073/pnas.95.20.12055

    Article  CAS  Google Scholar 

  • Turgeon R, Webb JA, Evert RF (1975) Ultrastructure of minor veins in cucurbita-pepo leaves. Protoplasma 83:217–232. doi:10.1007/Bf01282555

    Article  Google Scholar 

  • Turgeon R, Beebe DU, Gowan E (1993) The intermediary cell—minor-vein anatomy and raffinose oligosaccharide synthesis in the scrophulariaceae. Planta 191:446–456

    Article  CAS  Google Scholar 

  • van Bel AJE, Furch ACU, Hafke JB, Knoblauch M, Patrick JW (2011) (Questions) m(n) on phloem biology. 2. Mass flow, molecular hopping, distribution patterns and macromolecular signalling. Plant Sci 181:325–330. doi:10.1016/j.plantsci.2011.05.008

    Article  PubMed  Google Scholar 

  • Voitsekhovskaja OV, Koroleva OA, Batashev DR, Knop C, Tomos AD, Gamalei YV, Heldt HW, Lohaus G (2006) Phloem loading in two Scrophulariaceae species. What can drive symplastic flow via plasmodesmata? Plant Physiol 140:383–395

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Volk GM, Turgeon R, Beebe DU (1996) Secondary plasmodesmata formation in the minor-vein phloem of Cucumis melo L and Cucurbita pepo L. Planta 199:425–432

    Article  Google Scholar 

  • Volk GM, Haritatos EE, Turgeon R (2003) Galactinol synthase gene expression in melon. J Am Soc Hortic Sci 128:8–15

    CAS  Google Scholar 

  • Wright KM, Roberts AG, Martens HJ, Sauer N, Oparka KJ (2003) Structural and functional vein maturation in developing tobacco leaves in relation to AtSUC2 promoter activity. Plant Physiol 131:1555–1565. doi:10.1104/pp.102.016022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wysocka-Diller JW, Helariutta Y, Fukaki H, Malamy JE, Benfey PN (2000) Molecular analysis of SCARECROW function reveals a radial patterning mechanism common to root and shoot. Development 127:595–603

    CAS  PubMed  Google Scholar 

  • Zhang C, Han L, Slewinski TL, Sun J, Zhang J, Wang ZY, Turgeon R (2014) Symplastic phloem loading in poplar. Plant Physiol. doi:10.1104/pp.114.245845

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Danish Council for Independent Research—Natural Sciences Grant 12-126055. AS thanks Tomas Bohr (Technical University of Denmark), Johannes Liesche and Helle J. Martens (University of Copenhagen) for fruitful discussions and inspiring collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Schulz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schulz, A. Diffusion or bulk flow: how plasmodesmata facilitate pre-phloem transport of assimilates. J Plant Res 128, 49–61 (2015). https://doi.org/10.1007/s10265-014-0676-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-014-0676-5

Keywords

Navigation