Skip to main content
Log in

Primary and secondary plasmodesmata: structure, origin, and functioning

  • Review Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

In the multicellular organisms of higher plants, plasmodesmata provide pathways for intimate symplasmic communication between neighboring cells. The arguments summarized in the present review demonstrate that plasmodesmata are diverse and highly dynamic structures. Differences in the plasmodesmal origin and modifications of the plasmodesmal structure and functioning at the various cell interfaces are the basic means which give rise to a complicated and flexibile symplasmic network. This complex communication system is discussed to serve a significant role in the coordinated development and in the concerted physiological functioning of the cells within the plant tissues, organs, and organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alosi MC, Calvin CL (1985) The ultrastructure of dwarf mistletoe (Arceuthobium spp.) sinker cells in the region of the host secondary vasculature. Can J Bot 63: 889–898

    Google Scholar 

  • Barnett JR (1987a) The development of fibre-tracheid pit membranes in Pyrus communis L. IAWA Bull NS8:134–142

    Google Scholar 

  • — (1987b) Changes in the distribution of plasmodesmata in developing fibre-tracheid pit membranes of Sorbus aucuparia L. Ann Bot 59: 269–279

    Google Scholar 

  • Baum H (1948) über die postgenitale Verwachsung in Karpellen. österr Bot Z 95: 86–94

    Google Scholar 

  • Beebe DU, Russin WA (1999) Plasmodesmata in the phloemloading pathway. In: van Bel AJE, van Kesteren WJP (eds) Plasmodesmata: structure, function, role in cell communication. Springer, Berlin Heidelberg New York Tokyo, pp 261–293

    Google Scholar 

  • Bergmans A, de Boer D, van Bel A, van der Schoot C (1993) The initiation and development of Iris flowers: permeability changes in the apex symplasm. Flowering Newsl 16: 19–26

    Google Scholar 

  • — (1997) The symplasmic coupling of L-2-cells diminishes in early floral development of Iris. Planta 203: 245–252

    CAS  Google Scholar 

  • Binding H, Witt D, Monzer J, Mordhorst G, Kollmann R (1987) Plant cell graft chimeras obtained by co-culture of isolated protoplasts. Protoplasma 141:64–73

    Google Scholar 

  • Blackman LM, Harper JDI, Overall RL (1999) Localization of a centrin-like protein to higher plant plasmodesmata. Eur J Cell Biol 78:297–304

    PubMed  CAS  Google Scholar 

  • Boeke JH (1971) Location of the postgenital fusion in the gynoecium of Capsella bursa-pastoris (L.). Acta Bot Neerl 20: 570–576

    Google Scholar 

  • — (1973a) The postgenital fusion in the gynoecium of Trifolium repens L.: light and electron microscopical aspects. Acta Bot Neerl 22: 503–509

    Google Scholar 

  • — (1973b) The use of light microscopy versus electron microscopy for the location of postgenital fusions in plants. Proc K Ned Akad Wet Ser C 76: 528–535

    Google Scholar 

  • — (1979) Postgenital fusion in the gynoecium of the periclinal chimera Laburnocytisus adamii (Poit.) Schneid. (Papilionaceae). Acta Bot Neerl 28:159–167

    Google Scholar 

  • Bosabalidis AM, Evert RF, Russin WA (1994) Ontogeny of the vascular bundles and contiguous tissues in the maize leaf blade. Am J Bot 81: 745–752

    Google Scholar 

  • Botha CEJ (1992) Plasmodesmatal distribution, structure and frequency in relation to assimilation in C3 and C4 grasses in southern Africa. Planta 187:348–358

    CAS  Google Scholar 

  • — (2000) Towards reconcilation of structure with function in plasmodesmata: who is the gatekeeper? Micron 31: 713–721

    PubMed  CAS  Google Scholar 

  • — (1993) The ultrastructure and computer-enhanced digital image analysis of plasmodesmata at the Kranz mesophyll-bundle sheath interface of Themeda triandra var. imberbis (Retz) A. Camus in conventionally-fixed leaf blades. Ann Bot 72: 255–261

    Google Scholar 

  • Bouhidel K, Irish VF (1996) Cellular interactions mediated by the homeotic PISTILLATA gene determine cell fate in the Arabidopsis flower. Dev Biol 174:22–31

    PubMed  CAS  Google Scholar 

  • Buder J (1911) Studien an Laburnum adami. Z Indukt Abstamm Vererbungsl 5:209–284

    Google Scholar 

  • Burgess J (1972) The occurrence of plasmodesmata-like structures in a non-division wall. Protoplasma 74: 449–458

    Google Scholar 

  • Carpenter R, Coen ES (1995) Transposon induced chimeras show that floricaula, a meristem identity gene, acts non-autonomously between cell layers. Development 121:19–26

    PubMed  CAS  Google Scholar 

  • Cooke TJ, Tilney MS, Tilney LG (1996) Plasmodesmatal networks in apical meristems and mature structures: geometric evidence for both primary and secondary formation of plasmodesmata. In: Smallwood M, Knox JP, Bowles DJ (eds) Membranes: specialized functions in plants. BIOS Scientific Publishers, Oxford, pp 471–488

    Google Scholar 

  • Crawford KM, Zambryski PC (1999) Plasmodesmata signaling: many roles, sophisticated statutes. Curr Opin Plant Biol 2: 382–387

    PubMed  CAS  Google Scholar 

  • Czaninski Y (1974) Cytologie végétale: formation des thylles dans le xylème de Daucus carota L.: étude ultrastructurale. C R Acad Sci Paris Ser D 278:253–256

    Google Scholar 

  • Davis AR, Gunning BES (1992) The modified stomata of the floral nectary of Vicia faba L. 1: development, anatomy and ultrastructure. Protoplasma 166:134–152

    Google Scholar 

  • Dawson JH, Musselman LJ, Wolswinkel P, Dörr I (1994) Biology and control of Cuscuta. Rev Weed Sci 6:265–317

    Google Scholar 

  • Dell B, Kuo J, Burbidge AH (1982) Anatomy of Pilostyles hamiltonii C.A. Gardner (Rafflesiaceae) in stems of Daviesia. Aust J Bot 30: 1–9

    Google Scholar 

  • Dengler NG, Dengler RE, Hattersley PW (1985) Differing ontogenetic origins of PCR (“Kranz”) sheaths in leaf blades of C4 grasses (Poaceae). Am J Bot 72:284–302

    Google Scholar 

  • Deom CM, Schubert K, Wolf S, Holt C, Lucas WJ, Beachy RN (1990) Molecular characterization and biological function of the movement protein of tobacco mosaic virus in transgenic plants. Proc Natl Acad Sci USA 87:3284–3288

    PubMed  CAS  Google Scholar 

  • Derrick PM, Nelson RS (1999) Plasmodesmata and long-distance virus movement. In: van Bel AJE, van Kesteren WJP (eds) Plasmodesmata: structure, function, role in cell communication. Springer, Berlin Heidelberg New York Tokyo, pp 315–339

    Google Scholar 

  • Ding B (1998) Intercellular protein trafficking through plasmodesmata. Plant Mol Biol 38: 279–310

    PubMed  CAS  Google Scholar 

  • — (1996) Secondary plasmodesmata: biogenesis, special functions and evolution. In: Smallwood M, Knox JP, Bowles DJ (eds) Membranes: specialized functions in plants. BIOS Scientific Publishers, Oxford, pp 489–506

    Google Scholar 

  • — (1992a) Secondary plasmodesmata are specific sites of localization of the tobacco mosaic virus movement protein in transgenic tobacco plants. Plant Cell 4: 915–928

    PubMed  CAS  Google Scholar 

  • — (1992b) Substructure of freeze substituted plasmodesmata. Protoplasma 169: 28–41

    Google Scholar 

  • — (1993) Correlation between arrested secondary plasmodesmal development and onset of accelerated leaf senescence in yeast acid invertase transgenic tobacco plants. Plant J 4:179–189

    PubMed  CAS  Google Scholar 

  • — (1999) Plasmodesmata and cell-to-cell communication in plants. Int Rev Cytol 190:251–316

    Article  CAS  Google Scholar 

  • Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig S, Roberts K, Scheres B (1993) Cellular organization of the Arabidopsis thaliana root tip. Development 119: 71–84

    PubMed  CAS  Google Scholar 

  • Dörr I (1968) Plasmatische Verbindungen zwischen artfremden Zellen. Naturwissenschaften 55: 396

    PubMed  Google Scholar 

  • — (1969) Feinstruktur intrazellulär wachsender Cuscuta-Hyphen. Protoplasma 67:123–137

    Google Scholar 

  • ---Dörr I (1987) The haustorium of Cuscuta: new structural results. In: Weber HC, Forstreuter W (eds) Parasitic flowering plants: proceedings of the 4th International Symposium on Parasitic Flowering Plants, Marburg, Federal Republic of Germany, pp 163–170

  • — (1996a) Interspecific plasmodesmata between higher parasites and their host plants. In: Third intern workshop on basic and applied research in plasmodesmatal biology, Zichron-Yakov, Israel, pp 120–122

    Google Scholar 

  • ---(1996b) New results on interspecific bridges between parasites and their hosts. In: Moreno T, Cubero JI, Berner D, Joel D, Musselman LJ, Parker C (eds) Advances in parasitic plant research: proceedings of the 6th International Weed Symposium, Cordoba, Spain, pp 196–201

  • Duckett CM, Oparka KJ, Prior DAM, Dolan L, Roberts K (1994) Dye-coupling in the root epidermis of Arabidopsis is progressively reduced during development. Development 120: 3247–3255

    CAS  Google Scholar 

  • Ehlers K, Kollmann R (1996a) Formation of branched plasmodesmata in regenerating Solanum migrum-protoplasts. Planta 199: 126–138

    CAS  Google Scholar 

  • — (1996b) Regulation of the symplasmic contact between physiologically different cells. In: Third intern workshop on basic and applied research in plasmodesmatal biology, Zichron-Yakov, Israel, pp 77–81

    Google Scholar 

  • — (2000) Sychronization of mitotic activity in protoplast-derived Solanum nigrum L. microcalluses is correlated with plasmodesmal connectivity. Planta 210:269–278

    PubMed  CAS  Google Scholar 

  • — (1999) The physiological and developmental consequences of plasmodesmal connectivity. In: van Bel AJE, van Kesteren WJP (eds) Plasmodesmata: structure, function, role in cell communication. Springer, Berlin Heidelberg New York Tokyo, pp 243–260

    Google Scholar 

  • — (1996) Subcellular localization of ubiquitin in plant protoplasts and the function of ubiquitin in selective degradation of outer-wall plasmodesmata in regenerating protoplasts. Planta 199:139–151

    CAS  Google Scholar 

  • Ehlers K, Binding H, Kollmann R (1999) The formation of symplasmic domains by plugging of plasmodesmata: a general event in plant morphogenesis? Protoplasma 209:181–192

    Google Scholar 

  • Epel B (1994) Plasmodesmata: composition, structure and trafficking. Plant Mol Biol 26:1343–1356

    PubMed  CAS  Google Scholar 

  • — (1992) Studies on the longitudinal and lateral transport of IAA in the shoots of etiolated corn seedlings. J Plant Physiol 140: 310–318

    PubMed  CAS  Google Scholar 

  • Erwee MG, Goodwin PB (1985) Symplast domains in the extrastelar tissue of Egeria densa Planch. Planta 163: 9–19

    CAS  Google Scholar 

  • — (1985) Cell-cell communication in the leaves of Commelina cyanea and other plants. Plant Cell Environ 8: 173–178

    Google Scholar 

  • Esau K (1948) Anatomic effects of the viruses of Pierce’s disease and phony peach. Hilgardia 18: 423–482

    Google Scholar 

  • Evert RF, Russin WA, Bosabalidis AM (1996) Anatomical and ultrastructural changes associated with sink-to-source transition in developing maize leaves. Int J Plant Sci 157: 247–261

    Google Scholar 

  • Fisher DB (1999) The estimated pore diameter for plasmodesmal channels in the Abutilon nectary trichome should be about 4 nm, rather than 3 nm. Planta 299–300

  • Gagnon MJ, Beebe DU (1996) Minor vein differentiation and the development of specialized plasmodesmata between companion cells and contiguous cells in expanding leaves of Moricandia arvensis (L.) DC. (Brassicaceae). Int J Plant Sci 157: 685–697

    Google Scholar 

  • Gamalei YV (1985) Characteristics of phloem loading in woody and herbaceous plants. Fiziol Rast 32: 866–876

    CAS  Google Scholar 

  • — (1989) Structure and function of leaf minor veins in trees and herbs: a taxonomic review. Trees 3: 96–110

    Google Scholar 

  • — (1994) Effects of temperature on the conformation of the endoplasmic reticulum and on starch accumulation in leaves with the symplasmic minor-vein configuration. Planta 194: 443–453

    CAS  Google Scholar 

  • Gisel A, Barella S, Hempel FD, Zambryski PC (1999) Temporal and spatial regulation of symplastic trafficking during development in Arabidopsis thaliana apices. Development 126:1879–1889

    PubMed  CAS  Google Scholar 

  • Glockmann C, Kollmann R (1996) Structure and development of cell connections in phloem cells of Metasequoia glyptostroboides needles I: ultrastructural aspects of modified primary plasmodesmata in Strasburger cells. Protoplasma 193:191–203

    Google Scholar 

  • Golecki B, Schulz A, Thompson GA (1999) Translocation of structural P-proteins in the phloem. Plant Cell 11:127–140

    PubMed  CAS  Google Scholar 

  • Goodwin PB, Cantril LC (1999) Use and limitations of fluorochromes for plasmodesmal research. In: van Bel AJE, van Kesteren WJP (eds) Plasmodesmata: structure, function, role in cell communication. Springer, Berlin Heidelberg New York Tokyo, pp 67–84

    Google Scholar 

  • Goshroy S, Lartey R, Sheng J, Citovski V (1997) Transport of proteins and nucleic acids through plasmodesmata. Annu Rev Plant Physiol Plant Mol Biol 48:27–50

    Google Scholar 

  • Grabski S, de Feijter AW, Schindler M (1993) Endoplasmic reticulum forms a dynamic continuum for lipid diffusion between contiguous soybean root cells. Plant Cell 5: 25–38

    PubMed  CAS  Google Scholar 

  • Gunning BES (1978) Age-related and origin-related control of the numbers of plasmodesmata in cell walls of developing Azolla roots. Planta 143:181–190

    Google Scholar 

  • — (1976) Quantitative assessment of symplastic transport of pre-nectar into trichomes of Abutilon nectaries. Aust J Plant Physiol 3: 619–637

    Article  Google Scholar 

  • — (eds) (1976) Intercellular communication in plants: studies on plasmodesmata. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Hantke SS, Carpenter R, Coen ES (1995) Expression of floricaula in single cell layers of perichimeras activates downstream homeotic genes in all layers of floral meristems. Development 121: 27–35

    PubMed  CAS  Google Scholar 

  • Hayes PM, Offler CE, Patrick JW (1985) Cellular structures, plasma membrane surface areas and plasmodesmatal frequencies of the stem of Phaseolus vulgaris L. in relation to. radial photosynthate transfer. Ann Bot 56:125–138

    Google Scholar 

  • Hepler PK (1982) Endoplasmic reticulum in the formation of the cell plate and plasmodesmata. Protoplasma 111: 121–133

    Google Scholar 

  • Hume M (1913) On the presence of connecting threads in graft hybrids. New Phytol 12: 216–220

    Google Scholar 

  • Imlau A, Truernit E, Sauer N (1999) Cell-to-cell and long-distance trafficking of the green fluorescent protein in the phloem and symplastic unloading of the protein into sink tissues. Plant Cell 11: 309–322

    PubMed  CAS  Google Scholar 

  • Itaya A, Woo YM, Masuta C, Bao Y, Nelson RS, Ding B (1998) Developmental regulation of intercellular protein trafficking through the plasmodesmata in tobacco leaf epidermis. Plant Physiol 118: 373–385

    PubMed  CAS  Google Scholar 

  • Jackson D, Hake S (1997) Morphogenesis on the move: cell-to-cell trafficking of plant regulatory proteins. Curr Opin Genet Dev 7: 495–500

    PubMed  CAS  Google Scholar 

  • Jian LC, Li PH, Sun LH, Chen THH (1997) Alterations in ultrastructure and subcellular localization of Ca2+ in poplar apical bud cells during the induction of dormancy. J Exp Bot 48:1195–1207

    CAS  Google Scholar 

  • Jeffree CE, Yeoman MM (1983) Development of intercellular connections between opposing cells in a graft union. New Phytol 93: 491–509

    Google Scholar 

  • Jones MGK (1976) The origin and development of plasmodesmata. In: Gunning BES, Robards AW (eds) Intercellular communication in plants: studies on plasmodesmata. Springer, Berlin Heidelberg New York, pp 81–105

    Google Scholar 

  • Kempers R, van Bel AJE (1997) Symplasmic connections between sieve element and companion cell in the stem phloem of Vicia faba have a molecular exclusion limit of at least 10 kDa. Planta 201:195–201

    CAS  Google Scholar 

  • — (1998) Symplasmic constriction and ultrastructural features of the sieve element/companion cell complex in the transport phloem of apoplasmically and symplasmically phloem loading species. Plant Physiol 116:271–278

    CAS  Google Scholar 

  • Knoblauch M, van Bel AJE (1998) Sieve tubes in action. Plant Cell 10: 35–50

    CAS  Google Scholar 

  • Kollmann R, Glockmann C (1985) Studies on graft unions I: plasmodesmata between cells of plants belonging to different unrelated taxa. Protoplasma 124:224–235

    Google Scholar 

  • — (1991) Studies on graft unions III: on the mechanism of secondary formation of plasmodesmata at the graft interface. Protoplasma 165:71–85

    Google Scholar 

  • ——(1999) Multimorphology and nomenclature of plasmodesmata in higher plants. In: van Bel AJE, van Kesteren WJP (eds) Plasmodesmata: structure, function, role in cell communication. Springer, Berlin Heidelberg New York Tokyo, pp 149–172

    Google Scholar 

  • — (1985) Studies on graft unions II: continuous and half plasmodesmata in different regions of the graft interface. Protoplasma 126:19–29

    Google Scholar 

  • Kragler F, Lucas WJ, Monzer J (1998a) Plasmodesmata: dynamics, domains and patterning. Ann Bot 81: 1–10

    Google Scholar 

  • — (1998b) Cell-to-cell transport of proteins: requirement for unfolding and characterization of binding to a putative plasmodesmal receptor. Plant J 15:367–381

    CAS  Google Scholar 

  • Krull R (1960) Untersuchungen liber den Bau und die Entwicklung der Plasmodesmen im Rindenparenchym von Viscum album. Planta 55: 598–629

    Google Scholar 

  • Kwiatkowska M (1991) Autoradiographic studies on the role of plasmodesmata in the transport of gibberellin. Planta 183: 294–299

    CAS  Google Scholar 

  • — (1999) Plasmodesmal coupling and cell differentiation in algae. In: van Bel AJE, van Kesteren WJP (eds) Plasmodesmata: structure, function, role in cell communication. Springer, Berlin Heidelberg New York Tokyo, pp 205–224

    Google Scholar 

  • — (1976) Plasmodesmata between synchronously and asynchronously developing cells of the antheridial filaments of Chara vulgaris L. Protoplasma 87: 317–327

    Google Scholar 

  • ——(1985) Changes in ultrastructure of plasmodesmata during spermatogenesis in Chara vulgaris L. Planta 166: 46–50

    Google Scholar 

  • — (1986) Changes in the occurrence and ultrastructure of plasmodesmata in antheridia of Chara vulgaris L. during different stages of spermatogenesis. Protoplasma 132:179–188

    Google Scholar 

  • Lachaud S, Maurousset L (1996) Occurrence of plasmodesmata between differentiating vessels and other xylem elements in Sorbus torminalis L. Crantz and their fate during xylem maturation. Protoplasma 191:220–226

    Google Scholar 

  • Lazzaro MD, Thomson WW (1996) The vacuolar-tubular continuum in living trichomes of chickpea (Cicer arietinum) provides a rapid means of solute delivery from base to tip. Protoplasma 193: 181–190

    Google Scholar 

  • Lucas WJ (1995) Plasmodesmata: intercellular channels for macromolecular transport in plants. Curr Opin Cell Biol 7: 673–680

    PubMed  CAS  Google Scholar 

  • -(1999) Plasmodesmata and the cell-to-cell transport of proteins and nucleoprotein complexes. J Exp Bot 50 (Special Issue SI): 979–987

  • —(1994) Plasmodesmata in relation to viral movement within leaf tissues. Annu Rev Phytopathol 32: 387–411

    CAS  Google Scholar 

  • — Ding B, van der Schoot C (1993) Plasmodesmata and the supracellular nature of plants. New Phytol 125: 435–476

    Google Scholar 

  • — Bouché-Pillon S, Jackson DP, Nguyen L, Baker L, Ding B, Hake S (1995) Selective trafficking of KNOTTED 1 homeodomain protein and its mRNA through plasmodesmata. Science 270: 1980–1983

    PubMed  CAS  Google Scholar 

  • Maszewski J, van Bel AJE (1996) Different patterns of intercellular transport of Lucifer Yellow in young and mature antheridia of Chara vulgaris L. Bot Acta 109:110–114

    Google Scholar 

  • McLean BG, Hempel FD, Zambryski PC (1997) Plant intercellular communication via plasmodesmata. Plant Cell 9:1043–1054

    PubMed  CAS  Google Scholar 

  • Mezitt LA, Lucas WJ (1996) Plasmodesmal cell-to-cell transport of proteins and nucleic acids. Plant Mol Biol 32: 251–273

    PubMed  CAS  Google Scholar 

  • Monzer J (1990) Secondary formation of plasmodesmata in cultured cells. In: Robards AW, Jongsma H, Lucas WJ, Pitts J, Spray D (eds) Parallels in cell to cell junctions in plants and animals. Springer, Berlin Heidelberg New York Tokyo, pp 185–197 (NATO ASI series, series H, vol 46)

    Google Scholar 

  • — (1991) Ultrastructure of secondary plasmodesmata formation in regenerating Solarium nirum-protoplast cultures. Protoplasma 165: 86–95

    Google Scholar 

  • Moore PJ, Fenczik CA, Deom CM, Beachy RN (1992) Developmental changes in plasmodesmata in transgenic tobacco expressing movement protein of tobacco mosaic virus. Protoplasma 170: 115–127

    Google Scholar 

  • Moore-Gordon CS, Cowan AK, Bertling I, Botha CEJ, Cross RHM (1998) Symplastic solute transport and avocado fruit development: a decline in cytokinin/ABA ratio is related to appearance of the Hass small fruit variant. Plant Cell Physiol 39:1027–1038

    CAS  Google Scholar 

  • Münch E (1930) Die Stoffbewegung in der Pflanze. Fischer, Jena

  • Nelson RS, van Bel AJE (1998) The mystery of virus trafficking into, through and out of vascular tissue. Prog Bot 59: 476–532

    Google Scholar 

  • Oparka KJ (1993) Signalling via plasmodesmata: the neglected pathway. Cell Biol 4:131–138

    CAS  Google Scholar 

  • — Duckett CM, Prior DAM, Fisher DB (1994) Real-time imaging of phloem unloading in the root tip of Arabidopsis. Plant J 6: 759–766

    Google Scholar 

  • — Duckett CM, Prior DAM, Fisher DB Prior DAM, Wright KM (1995) Symplasmic communication between primary and developing lateral roots of Arabidopsis thaliana. J Exp Bot 46:187–197

    CAS  Google Scholar 

  • — Robards AG, Boewink P, Santa Cruz S, Roberts I, Pradel KS, Imlau A, Kotlitzky G, Sauer N, Epel B (1999) Simple, but not branched, plasmodesmata allow the nonspecific trafficking of proteins in developing tobacco leaves. Cell 97: 743–754

    PubMed  CAS  Google Scholar 

  • Ormenese S, Havelange A, Deltour R, Bernier G (2000) The frequency of plasmodesmata increases early in the whole shoot apical meristem of Sinapis alba L. during floral induction. Planta 211: 370–375

    PubMed  CAS  Google Scholar 

  • Overall RL (1999) Substructure of plasmodesmata. In: van Bel AJE, van Kesteren WJP (eds) Plasmodesmata: structure, function, role in cell communication. Springer, Berlin Heidelberg New York Tokyo, pp 129–148

    Google Scholar 

  • — Blackman LM (1996) A model of the macromolecular structure of plasmodesmata. Trends Plant Sci 1: 307–311

    Google Scholar 

  • — Wolfe J, Gunning BES (1982) Intercellular communication in Azolla roots I: ultrastructure of plasmodesmata. Protoplasma 111: 134–150

    Google Scholar 

  • Palevitz BA, Hepler PK (1985) Changes in dye coupling of stomatal cells of Allium and Commelina demonstrated by microinjection of Lucifer Yellow. Planta 164: 473–479

    Google Scholar 

  • Patrick JW, Offler CE (1996) Post-sieve element transport of photoassimilates in sink regions. J Exp Bot 47:1165–1177

    CAS  Google Scholar 

  • Perbal MC, Haughn G, Saedler H, Schwarz-Sommer Z (1996) Non-autonomous function of the Anthirrhinum floral homeotic proteins DEFICIENS and GLOBOSA is exerted by their polar cell-to-cell trafficking. Development 122: 3433–3441

    PubMed  CAS  Google Scholar 

  • Pickard BG, Beachy RN (1999) Intercellular connections are developmentally controlled to help move molecules throught the plant. Cell 98: 5–8

    PubMed  CAS  Google Scholar 

  • Radford JE, White RG (1998) Localization of a myosin-like protein to plasmodesmata. Plant J 14: 743–750

    PubMed  CAS  Google Scholar 

  • — Vesk M, Overall RL (1998) Callose deposition at plasmodesmata. Protoplasma 201: 30–37

    CAS  Google Scholar 

  • Rinne P, van der Schoot C (1998) Symplasmic fields in the tunica of the shoot apical meristem coordinate morphogenetic events. Development 125:1477–1485

    PubMed  CAS  Google Scholar 

  • Robards AW, Lucas WJ (1990) Plasmodesmata. Annu Rev Plant Physiol Plant Mol Biol 41: 369–419

    Google Scholar 

  • Robinson-Beers K, Evert RF (1991a) Fine structure of plasmodesmata in mature leaves of sugarcane. Planta 184: 307–318

    Google Scholar 

  • ----(1991b) Structure and development of plasmodesmata at the mesophyll/bundle sheath cell interface of sugarcane leaves. In: Bonnemain JL, Delrot S, Lucas WJ, Dainty J (eds) Recent advances in phloem transport and assimilate compartmentation. Ouest Editions, Nantes, pp 116–122

  • Rost TL, Baum SF, Nichol S (1996) Root apical organization in Arabidopsis thaliana ecotype “WS” and a comment on root cap structure. Plant Soil 187: 91–95

    CAS  Google Scholar 

  • Santiago JF, Goodwin PB (1988) Restricted cell/cell communication in the shoot apex of Silène coeli-rosa during the transition to flowering is associated with a high mitotic index rather than with evocation. Protoplasma 146: 52–60

    Google Scholar 

  • Schnepf E, Sawidis T (1991) Filament disruption in Funaria protonemata: occlusion of plasmodesmata. Bot Acta 104: 98–102

    Google Scholar 

  • — Sych A (1983) Distribution of plasmodesmata in developing Sphagnum leaflets. Protoplasma 116: 51–56

    Google Scholar 

  • Schulz A (1995) Plasmodesmal widening accompanies the shortterm increase in symplasmic phloem unloading of pea roots under osmotic stress. Protoplasma 188: 22–37

    Google Scholar 

  • — (1999) Physiological control of plasmodesmal gating. In: van Bel AJE, van Kesteren WJP (eds) Plasmodesmata: structure, function, role in cell communication. Springer, Berlin Heidelberg New York Tokyo, pp 173–204

    Google Scholar 

  • Seagull RW (1983) Differences in the frequency and disposition of plasmodesmata resulting from root cell elongation. Planta 159: 497–504

    Google Scholar 

  • Siegel NR, Verbeke JA (1989) Diffusable factors essential for epidermal redifferentiation in Catharanthus roseus. Science 244: 580–582

    PubMed  Google Scholar 

  • Staehelin LA, Hepler PK (1996) Cytokinesis in higher plants. Cell 84: 821–824

    PubMed  CAS  Google Scholar 

  • Steinberg G, Kollmann R (1994) A quantitative analysis of the inter-specific plasmodesmata in the non-division walls of the plant chimera Laburnocytisus adamii (Poit.) Schneid. Planta 192:75–83

    Google Scholar 

  • Strasburger E (1901) über Plasmaverbindungen pflanzlicher Zellen. Jahrb Wiss Bot 36: 493–610

    Google Scholar 

  • Tainter FH (1971) The ultrastructure of Arceuthobium pusillum. Can J Bot 49:1615–1622

    Article  Google Scholar 

  • Terry BR, Robards AW (1987) Hydrodynamic radius alone governs the mobility of molecules through plasmodesmata. Planta 171: 145–157

    CAS  Google Scholar 

  • Thompson GA (1999) P-protein trafficking through plasmodesmata. In: van Bel AJE, van Kesteren WJP (eds) Plasmodesmata: structure, function, role in cell communication. Springer, Berlin Heidelberg New York Tokyo, pp 295–313

    Google Scholar 

  • Tilney LG, Cooke TJ, Conelly PS, Tilney MS (1990) The distribution of plasmodesmata and its relationship to morphogenesis in fern gametophytes. Development 110:1209–1221

    PubMed  CAS  Google Scholar 

  • Tilney-Bassett RAE (1986) Plant chimeras. Edward Arnolds, London

  • Trivett CL, Evert RF (1998) Ontogeny of the vascular bundles and contiguous tissues in the barley leaf blade. Int J Plant Sci 159: 716–723

    Google Scholar 

  • Turgeon R (1989) The sink-source transition in leaves. Annu Rev Plant Physiol Plant Mol Biol 40:119–138

    Google Scholar 

  • van Bel AJE (1992) Different phloem-loading machineries correlated with the climate. Acta Bot Neerl 41:121–141

    Google Scholar 

  • — (1993a) Strategies of phloem loading. Annu Rev Plant Physiol Plant Mol Biol 44: 253–281

    Google Scholar 

  • — (1993b) The transport phloem: specifics of its functioning. Prog Bot 54:134–150

    Google Scholar 

  • — (1996) Interaction between sieve element and companion cell and the consequences for photoassimilate distribution: two structural hardware frames with associated physiological software packages in dicotyledons? J Exp Bot 47:1129–1140

    Google Scholar 

  • — Ehlers K (2000) Symplasmic organization of the transport phloem and the implications for photosynthate transfer to the cambium. In: Savidge RA, Barnett JR, Napier R (eds) Cell and molecular biology of wood formation. BIOS Scientific Publishers, Oxford, pp 85–99

    Google Scholar 

  • — Kempers R (1990) Symplastic isolation of the sieve element-companion cell complex in the phloem of Ricinus communis and Salix alba stems. Planta 183: 69–76

    Google Scholar 

  • — (1996) The pore/plasmodesma unit, key element in the interplay between sieve element and companion cell. Prog Bot 58: 278–291

    Google Scholar 

  • — Oparka KJ (1995) On the validity of plasmodesmograms. Bot Acta 108:174–182

    Google Scholar 

  • — van Kesteren WJP (eds) (1999) Plasmodesmata: structure, function, role in cell communication. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • — van Rijen HVM (1994) Microelectrode-recorded development of the symplasmic autonomy of the sieve element/companion cell complex in the stem phloem of Lupinus luteus L. Planta 192: 165–175

    Google Scholar 

  • — Günther S, van Kesteren WJP (1999) Plasmodesmata: a maze of questions. In: van Bel AJE, van Kesteren WJP (eds) Plasmodesmata: structure, function, role in cell communication. Springer, Berlin Heidelberg New York Tokyo, pp 1–26

    Google Scholar 

  • van der Schoot C, Rinne P (1999a) The symplasmic organization of the shoot apical meristem. In: van Bel AJE, van Kesteren WJP (eds) Plasmodesmata: structure, function, role in cell communication. Springer, Berlin Heidelberg New York Tokyo, pp 225–242

    Google Scholar 

  • — (1999b) Networks for shoot design. Trends Plant Sci 4: 31–37

    Google Scholar 

  • — van Bel AJE (1989) Glass microelectrode measurements of sieve tube membrane potentials in internode discs and petiole strips of tomato (Solarium lycopersicum L.). Protoplasma 149:144–154

    Google Scholar 

  • — (1990) Mapping membrane potential differences and dyecoupling in internodal tissues of tomato (Solarium lycopersicum L.). Planta 182: 9–21

    Google Scholar 

  • — Dietrich MA, Storms M, Verbeke JA, Lucas WJ (1995) Establishment of a cell-to-cell communication pathway between separate carpels during gynoecium development. Planta 195: 450–455

    Google Scholar 

  • Verbeke JA, Walker DB (1985) Rate of induced cellular dedifferentiation in Catharanthus roseus. Am J Bot 72:1314–1317

    Google Scholar 

  • Volk GM, Turgeon R, Beebe DU (1996) Secondary plasmodesmata formation in the minor-vein phloem of Cucumis melo L. and Cucurbita pepo L. Planta 199: 425–432

    Google Scholar 

  • Waigmann E, Zambryski P (1995) Tobacco mosaic virus movement protein-mediated protein transport between trichome cells. Plant Cell 7:2069–2079

    PubMed  CAS  Google Scholar 

  • — Lucas WJ, Citovsky V, Zambryski P (1994) Direct functional assay for tobacco mosaic virus cell-to-cell movement protein and identification of a domain involved in increasing plasmodesmal permeability. Proc Natl Acad Sci USA 91:1433–1437

    Google Scholar 

  • — Turner A, Peart J, Roberts K, Zambryski P (1997) Ultrastructural analysis of leaf trichome plasmodesmata reveals major differences from mesophyll plasmodesmata. Planta 203: 75–84

    Google Scholar 

  • Wang N, Fisher DB (1994) The use of fluorescent tracers to characterize the post-phloem pathway in maternal tissues of developing wheat grains. Plant Physiol 104:17–27

    PubMed  CAS  Google Scholar 

  • Warmbrodt RD, VanDerWoude WJ (1990) Leaf of Spinacia oleracea (spinach): ultrastructure and plasmodesmatal distribution and frequency, in relation to sieve-tube loading. Am J Bot 77:1361–1377

    Google Scholar 

  • White RG, Badelt K, Overall RL, Vesk M (1994) Actin associated with plasmodesmata. Protoplasma 180:169–184

    CAS  Google Scholar 

  • Wille AC, Lucas WJ (1984) Ultrastructural and histochemical studies on guard cells. Planta 160:129–142

    Google Scholar 

  • Wolf S, Deom CM, Beachy RN, Lucas WJ (1989) Movement protein of tobacco mosaic virus modifies plasmodesmal size exclusion limit. Science 246: 377–379

    PubMed  CAS  Google Scholar 

  • Wright KM, Oparka KJ (1997) Metabolic inhibitors induce symplastic movement of solutes from the transport phloem of Arabidopsis roots. J Exp Bot 48:1807–1814

    CAS  Google Scholar 

  • Xuhan X, van Lammeren AAM (1994) The ultrastructure of the seed coat development in Ranunculus scleratus. Acta Bot Neerl 43:27–37

    Google Scholar 

  • Zhu T, Lucas WJ, Rost TL (1998a) Directional cell-to-cell communication in the Arabidopsis root apical meristem I: an ultrastructural and functional analysis. Protoplasma 203: 35–47

    Google Scholar 

  • — O’Quinn RL, Lucas WJ, Rost TL (1998b) Directional cell-to-cell communication in the Arabidopsis root apical meristem II: dynamics of plasmodesmal formation. Protoplasma 204:84–931

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehlers, K., Kollmann, R. Primary and secondary plasmodesmata: structure, origin, and functioning. Protoplasma 216, 1–30 (2001). https://doi.org/10.1007/BF02680127

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02680127

Keywords

Navigation