Skip to main content
Log in

Mathematical Model, Numerical Simulation and Convergence Analysis of a Semiconductor Device Problem with Heat and Magnetic Influences

  • Published:
Acta Mathematicae Applicatae Sinica, English Series Aims and scope Submit manuscript

Abstract

In this paper, the authors discuss a three-dimensional problem of the semiconductor device type involved its mathematical description, numerical simulation and theoretical analysis. Two important factors, heat and magnetic influences are involved. The mathematical model is formulated by four nonlinear partial differential equations (PDEs), determining four major physical variables. The influences of magnetic fields are supposed to be weak, and the strength is parallel to the z-axis. The elliptic equation is treated by a block-centered method, and the law of conservation is preserved. The computational accuracy is improved one order. Other equations are convection-dominated, thus are approximated by upwind block-centered differences. Upwind difference can eliminate numerical dispersion and nonphysical oscillation. The diffusion is approximated by the block-centered difference, while the convection term is treated by upwind approximation. Furthermore, the unknowns and adjoint functions are computed at the same time. These characters play important roles in numerical computations of conductor device problems. Using the theories of priori analysis such as energy estimates, the principle of duality and mathematical inductions, an optimal estimates result is obtained. Then a composite numerical method is shown for solving this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allegretto, W. Mun, Y.S., Nathan, A., Baltes, H.P. Optimization of semiconductor magnetic field sensors using finite element analysis. Proc. NASECODE IV Conf., Boole Press, Dublin, 129–133 (1985)

    Google Scholar 

  2. Arbogast, T., Dawson, C.N., Keenan, P.T., Wheeler, M.F., Yotov, I. Enhanced cell-centered finite differences for elliptic equations on general geometry. SIAM J. Sci., Comput., 19(2): 404–425 (1998)

    Article  MathSciNet  Google Scholar 

  3. Arbogast, T., Wheeler, M.F., Yotov, I. Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences. SIAM J. Numer. Anal., 34(2): 828–852 (1997)

    Article  MathSciNet  Google Scholar 

  4. Cai, Z. On the finite volume element method. Numer. Math., 58(1): 713–735 (1991)

    Article  MathSciNet  Google Scholar 

  5. Cai, Z., Jones, J.E., Mccormilk, S.F., Russell, T.F. Control-volume mixed finite element methods. Comput. Geosci., 1(3): 289–315 (1997)

    Article  MathSciNet  Google Scholar 

  6. Chou, S.H., Kawk, D.Y., Vassileviki, P. Mixed volume methods for elliptic problems on triangular grids. SIAM J. Numer. Anal., 35(5): 1850–1861 (1998)

    Article  MathSciNet  Google Scholar 

  7. Chou, S.H., Kawk, D.Y., Vassileviki, P. Mixed volume methods on rectangular grids for elliptic problem. SIAM J. Numer. Anal., 37(3): 758–771 (2000)

    Article  MathSciNet  Google Scholar 

  8. Chou, S.H., Vassileviki, P. A general mixed covolume framework for constructing conservative schemes for elliptic problems. Math. Comp., 68(227): 991–1011 (1999)

    Article  MathSciNet  Google Scholar 

  9. Douglas, Jr J., Ewing, R.E., Wheeler, M.F. Approximation of the pressure by a mixed method in the simulation of miscible displacement. RAIRO Anal. Numer., 17(1): 17–33 (1983)

    Article  MathSciNet  Google Scholar 

  10. Douglas, Jr J., Ewing, R.E., Wheeler, M.F. A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media. RAIRO Anal. Numer., 17(3): 249–265 (1983)

    Article  MathSciNet  Google Scholar 

  11. Douglas, Jr J., Yuan, Y.R. Finite difference methods for transient behavior of a semiconductor device. Mat. Apli. Comp., 6(1): 25–37 (1987)

    MathSciNet  Google Scholar 

  12. He, Y., Wei, T.L. Computer simulation method for semiconductor device. Science Press, Beijing, 1989

    Google Scholar 

  13. Jiang, L.S., Pang, Z.Y. Finite element method and its theory. People’s Education Press, Beijing, 1979

    Google Scholar 

  14. Jones, J.E. A mixed volume method for accurate computation of fluid velocities in porous media. Ph. D. Thesis, University of Colorado, Denver, Co., 1995

    Google Scholar 

  15. Li, R.H., Chen, Z.Y. Generalized difference of differential equations. Jilin University Press, Changchun, 1994

    Google Scholar 

  16. Nitsche, J. Lineare spline-funktionen und die methoden von Ritz für elliptische randwertprobleme. Arch. for Rational Mech. Anal., 36(5): 348–355 (1970)

    Article  MathSciNet  Google Scholar 

  17. Pan, H., Rui, H.X. Mixed element method for two-dimensional Darcy-Forchheimer model. J. Sci. Comput., 52(3): 563–587 (2012)

    Article  MathSciNet  Google Scholar 

  18. Raviart, P.A., Thomas, J.M. A mixed finite element method for second order elliptic problems, in: Mathematical Aspects of the Finite Element Method. Lecture Notes in Mathematics, 606, Springer, 1977

  19. Rui, H.X., Pan, H. A block-centered finite difference method for the Darcy-Forchheimer Model. SIAM J. Numer. Anal., 50(5): 2612–2631 (2012)

    Article  MathSciNet  Google Scholar 

  20. Russell, T.F. Rigorous block-centered discritization on inregular grids: Improved simulation of complex reservoir systems. Project Report, Research Comporation, Tulsa, 1995

  21. Shi, M. Physics of modern semiconductor device. Science Press, Beijing, 2002

    Google Scholar 

  22. Wang, Y.M. Mathematical model and its analysis for the carrier transport in semiconductor devices. Appl. Math. J. Chinese Univ., 2(2): 228–240 (1987)

    Google Scholar 

  23. Weiser, A., Wheeler, M.F. On convergence of block-centered finite difference for elliptic problems. SIAM J. Numer. Anal., 25(2): 351–375 (1988)

    Article  MathSciNet  Google Scholar 

  24. Yuan, Y.R. The approximation of the electronic potential by a mixed method in the simulation of semiconductor. J. Systems Sci. Math. Sci., 11(2): 117–120 (1991)

    MathSciNet  Google Scholar 

  25. Yuan, Y.R. Characteristics method with mixed finite element for transient behavior of semiconductor device. Chin. Sci. Bull., 36(17): 1356–1357 (1991)

    Google Scholar 

  26. Yuan, Y.R. Finite element method and analysis of numerical simulation of semiconductor device. Acta Math. Sci., 13(3): 241–251 (1993)

    MathSciNet  Google Scholar 

  27. Yuan, Y.R. Recent progress in numerical methods for semiconductor devices. Chinese J. Computational Physics, 26(3): 317–324 (2009)

    Google Scholar 

  28. Yuan, Y.R., Ding, L.Y., Yang, H. A new method and theoretical analysis of numerical analog of semiconductor, Chin. Sci. Bull., 27(7): 790–795 (1982)

    MathSciNet  Google Scholar 

  29. Yuan, Y.R., Liu, Y.X. Theory and applications of numerical simualtion for semiconductor device. Science Press, Beijing, 2018

    Google Scholar 

  30. Yuan, Y.R., Liu, Y.X., Li, C.F., Sun, T.J., Ma, L.Q. Analysis on block-centered finite differences of numerical simulation of semiconductor detector. Appl., Math. Comput., 279: 1–15 (2016)

    MathSciNet  Google Scholar 

  31. Yuan, Y.R., Yang, Q., Li, C.F., Sun, T.J. Numerical method of mixed finite volume-modified upwind fractional step difference for three-dimensional semiconductor device transient behavior problems. Acta. Math. Sci. B, 37(1): 259–279 (2017)

    Article  MathSciNet  Google Scholar 

  32. Zlámal, M. Finite element solution of the fundamental equations of semiconductor devices. I. Math. Comput., 46(173): 27–43 (1986)

    Article  MathSciNet  Google Scholar 

  33. Zhu, J. Finite element approximation to initial-boundary value problems of the semiconductor device equations with magnetic influence. Math. Comput., 59(199): 39–62 (1992)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-rang Yuan.

Ethics declarations

The authors declare no conflict of interest.

Additional information

The project is supported by the National Natural Science Foundation of China (Grant No. 11871312), Natural Science Foundation of Shandong Province (Grant No. ZR2021MA019).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Cf., Yuan, Yr. & Song, Hl. Mathematical Model, Numerical Simulation and Convergence Analysis of a Semiconductor Device Problem with Heat and Magnetic Influences. Acta Math. Appl. Sin. Engl. Ser. 40, 302–319 (2024). https://doi.org/10.1007/s10255-024-1088-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10255-024-1088-5

Keywords

2020 MR Subject Classification

Navigation