Skip to main content

Advertisement

Log in

Interesting effects of interleukins and immune cells on acute respiratory distress syndrome

  • Review
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Acute respiratory distress syndrome (ARDS) is a medical condition characterized by widespread inflammation in the lungs with consequent proportional loss of gas exchange function. ARDS is linked with severe pulmonary or systemic infection. Several factors, including secretory cytokines, immune cells, and lung epithelial and endothelial cells, play a role in the development and progression of this disease. The present study is based on Pubmed database information (1987–2022) using the words "Acute respiratory distress syndrome", "Interleukin", "Cytokines" and "Immune cells". Cytokines and immune cells play an important role in this disease, with particular emphasis on the balance between pro-inflammatory and anti-inflammatory factors. Neutrophils are one of several important mediators of Inflammation, lung tissue destruction, and malfunction during ARDS. Some immune cells, such as macrophages and eosinophils, play a dual role in releasing inflammatory mediators, recruitment inflammatory cells and the progression of ARDS, or releasing anti-inflammatory mediators, clearing the lung of inflammatory cells, and helping to improve the disease. Different interleukins play a role in the development or inhibition of ARDS by helping to activate various signaling pathways, helping to secrete other inflammatory or anti-inflammatory interleukins, and playing a role in the production and balance between immune cells involved in ARDS. As a result, immune cells and, inflammatory cytokines, especially interleukins play an important role in the pathogenesis of this disease Therefore, understanding the relevant mechanisms will help in the proper diagnosis and treatment of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All the data have been included in the manuscript and will be made available upon publication of the manuscript.

References

  1. Fu J, Lin SH, Wang CJ, et al. HMGB1 regulates IL-33 expression in acute respiratory distress syndrome. Int Immunopharmacol. 2016;38:267–74. https://doi.org/10.1016/j.intimp.2016.06.010.

    Article  CAS  PubMed  Google Scholar 

  2. McNicholas BA, Rooney GM, Laffey JG. Lessons to learn from epidemiologic studies in ARDS. Curr Opin Crit Care. 2018;24(1):41–8.

    Article  PubMed  Google Scholar 

  3. Flori H, Sapru A, Quasney MW, et al. A prospective investigation of interleukin-8 levels in pediatric acute respiratory failure and acute respiratory distress syndrome. Crit Care. 2019;23(1):128. https://doi.org/10.1186/s13054-019-2342-8.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1334–49. https://doi.org/10.1056/nejm200005043421806.

    Article  CAS  PubMed  Google Scholar 

  5. Lesur O, Kokis A, Hermans C, Fulop T, Bernard A, Lane D. Interleukin-2 involvement in early acute respiratory distress syndrome: relationship with polymorphonuclear neutrophil apoptosis and patient survival. Crit Care Med. 2000;28(12):3814–22. https://doi.org/10.1097/00003246-200012000-00010.

    Article  CAS  PubMed  Google Scholar 

  6. Guery B, Georges H, Labalette M, et al. Acute respiratory distress syndrome and severe acute respiratory syndrome: circulating interleukin 4 level could be a marker. Med Mal Infect. 2004;34(7):328–30. https://doi.org/10.1016/j.medmal.2004.04.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang CJ, Zhang M, Wu H, Lin SH, Xu F. IL-35 interferes with splenic T cells in a clinical and experimental model of acute respiratory distress syndrome. Int Immunopharmacol. 2019;67:386–95. https://doi.org/10.1016/j.intimp.2018.12.024.

    Article  CAS  PubMed  Google Scholar 

  8. Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315(8):788–800. https://doi.org/10.1001/jama.2016.0291.

    Article  CAS  PubMed  Google Scholar 

  9. Liu CH, Kuo SW, Ko WJ, et al. Early measurement of IL-10 predicts the outcomes of patients with acute respiratory distress syndrome receiving extracorporeal membrane oxygenation. Sci Rep. 2017;7(1):1021. https://doi.org/10.1038/s41598-017-01225-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Agouridakis P, Kyriakou D, Alexandrakis MG, Perisinakis K, Karkavitsas N, Bouros D. Association between increased levels of IL-2 and IL-15 and outcome in patients with early acute respiratory distress syndrome. Eur J Clin Invest. 2002;32(11):862–7. https://doi.org/10.1046/j.1365-2362.2002.01081.x.

    Article  CAS  PubMed  Google Scholar 

  11. Aggarwal A, Baker CS, Evans TW, Haslam PL. G-CSF and IL-8 but not GM-CSF correlate with severity of pulmonary neutrophilia in acute respiratory distress syndrome. Eur Respir J. 2000;15(5):895–901. https://doi.org/10.1034/j.1399-3003.2000.15e14.x.

    Article  CAS  PubMed  Google Scholar 

  12. Steinberg KP, Milberg JA, Martin TR, Maunder RJ, Cockrill BA, Hudson LD. Evolution of bronchoalveolar cell populations in the adult respiratory distress syndrome. Am J Respir Crit Care Med. 1994;150(1):113–22. https://doi.org/10.1164/ajrccm.150.1.8025736.

    Article  CAS  PubMed  Google Scholar 

  13. Baughman RP, Gunther KL, Rashkin MC, Keeton DA, Pattishall EN. Changes in the inflammatory response of the lung during acute respiratory distress syndrome: prognostic indicators. Am J Respir Crit Care Med. 1996;154(1):76–81. https://doi.org/10.1164/ajrccm.154.1.8680703.

    Article  CAS  PubMed  Google Scholar 

  14. Huang X, Xiu H, Zhang S, Zhang G. The role of macrophages in the pathogenesis of ALI/ARDS. Mediators Inflamm. 2018;2018:1264913. https://doi.org/10.1155/2018/1264913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bhatia M, Zemans RL, Jeyaseelan S. Role of chemokines in the pathogenesis of acute lung injury. Am J Respir Cell Mol Biol. 2012;46(5):566–72. https://doi.org/10.1165/rcmb.2011-0392TR.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen X, Tang J, Shuai W, Meng J, Feng J, Han Z. Macrophage polarization and its role in the pathogenesis of acute lung injury/acute respiratory distress syndrome. Inflamm Res. 2020;69(9):883–95. https://doi.org/10.1007/s00011-020-01378-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Short KR, Kroeze E, Fouchier RAM, Kuiken T. Pathogenesis of influenza-induced acute respiratory distress syndrome. Lancet Infect Dis. 2014;14(1):57–69. https://doi.org/10.1016/s1473-3099(13)70286-x.

    Article  CAS  PubMed  Google Scholar 

  18. Mikacenic C, Hansen EE, Radella F, Gharib SA, Stapleton RD, Wurfel MM. Interleukin-17A Is associated with alveolar inflammation and poor outcomes in acute respiratory distress syndrome. Crit Care Med. 2016;44(3):496–502. https://doi.org/10.1097/ccm.0000000000001409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jorens PG, Van Damme J, De Backer W, et al. Interleukin 8 (IL-8) in the bronchoalveolar lavage fluid from patients with the adult respiratory distress syndrome (ARDS) and patients at risk for ARDS. Cytokine. 1992;4(6):592–7. https://doi.org/10.1016/1043-4666(92)90025-m.

    Article  CAS  PubMed  Google Scholar 

  20. Lee JW, Chun W, Lee HJ, et al. The role of macrophages in the development of acute and chronic inflammatory lung diseases. Cells. 2021. https://doi.org/10.3390/cells10040897.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Johnston LK, Rims CR, Gill SE, McGuire JK, Manicone AM. Pulmonary macrophage subpopulations in the induction and resolution of acute lung injury. Am J Respir Cell Mol Biol. 2012;47(4):417–26. https://doi.org/10.1165/rcmb.2012-0090OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tan W, Zhang C, Liu J, Miao Q. Regulatory T-cells promote pulmonary repair by modulating T helper cell immune responses in lipopolysaccharide-induced acute respiratory distress syndrome. Immunology. 2019;157(2):151–62. https://doi.org/10.1111/imm.13060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Al Duhailib Z, Farooqi M, Piticaru J, Alhazzani W, Nair P. The role of eosinophils in sepsis and acute respiratory distress syndrome: a scoping review. Can J Anaesth. 2021;68(5):715–26. https://doi.org/10.1007/s12630-021-01920-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhu C, Weng QY, Zhou LR, et al. Homeostatic and early-recruited CD101(-) eosinophils suppress endotoxin-induced acute lung injury. Eur Respir J. 2020. https://doi.org/10.1183/13993003.02354-2019.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chen HT, Xu JF, Huang XX, Zhou NY, Wang YK, Mao Y. Blood eosinophils and mortality in patients with acute respiratory distress syndrome: a propensity score matching analysis. World J Emerg Med. 2021;12(2):131–6. https://doi.org/10.5847/wjem.j.1920-8642.2021.02.008.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pooladanda V, Thatikonda S, Bale S, et al. Nimbolide protects against endotoxin-induced acute respiratory distress syndrome by inhibiting TNF-α mediated NF-κB and HDAC-3 nuclear translocation. Cell Death Dis. 2019;10(2):81. https://doi.org/10.1038/s41419-018-1247-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang SR, Ma AY, Liu Y, Qu Y. Effects of inflammatory factors including plasma tumor necrosis factor-α in the clinical treatment of acute respiratory distress syndrome. Oncol Lett. 2017;13(6):5016–20. https://doi.org/10.3892/ol.2017.6090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ding Y, Feng Q, Chen J, Song J. TLR4/NF-κB signaling pathway gene single nucleotide polymorphisms alter gene expression levels and affect ARDS occurrence and prognosis outcomes. Medicine (Baltimore). 2019;98(26):e16029. https://doi.org/10.1097/md.0000000000016029.

    Article  PubMed  Google Scholar 

  29. Azevedo ZM, Moore DB, Lima FC, et al. Tumor necrosis factor (TNF) and lymphotoxin-alpha (LTA) single nucleotide polymorphisms: importance in ARDS in septic pediatric critically ill patients. Hum Immunol. 2012;73(6):661–7. https://doi.org/10.1016/j.humimm.2012.03.007.

    Article  CAS  PubMed  Google Scholar 

  30. Dinarello CA. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood. 2011;117(14):3720–32. https://doi.org/10.1182/blood-2010-07-273417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Meyer NJ, Feng R, Li M, et al. IL1RN coding variant is associated with lower risk of acute respiratory distress syndrome and increased plasma IL-1 receptor antagonist. Am J Respir Crit Care Med. 2013;187(9):950–9. https://doi.org/10.1164/rccm.201208-1501OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ganter MT, Roux J, Miyazawa B, et al. Interleukin-1beta causes acute lung injury via alphavbeta5 and alphavbeta6 integrin-dependent mechanisms. Circ Res. 2008;102(7):804–12. https://doi.org/10.1161/circresaha.107.161067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kovach MA, Stringer KA, Bunting R, et al. Microarray analysis identifies IL-1 receptor type 2 as a novel candidate biomarker in patients with acute respiratory distress syndrome. Respir Res. 2015;16(1):29. https://doi.org/10.1186/s12931-015-0190-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Salluh JI, Soares M. ICU severity of illness scores: APACHE, SAPS and MPM. Curr Opin Crit Care. 2014;20(5):557–65. https://doi.org/10.1097/mcc.0000000000000135.

    Article  PubMed  Google Scholar 

  35. Edwards MJ, Schuschke DA, Abney DL, Miller FN. Interleukin-2 acutely induces protein leakage from the microcirculation. J Surg Res. 1991;50(6):609–15. https://doi.org/10.1016/0022-4804(91)90050-v.

    Article  CAS  PubMed  Google Scholar 

  36. Meduri GU, Kohler G, Headley S, Tolley E, Stentz F, Postlethwaite A. Inflammatory cytokines in the BAL of patients with ARDS. Persistent elevation over time predicts poor outcome. Chest. 1995;108(5):1303–14. https://doi.org/10.1378/chest.108.5.1303.

    Article  CAS  PubMed  Google Scholar 

  37. Headley AS, Tolley E, Meduri GU. Infections and the inflammatory response in acute respiratory distress syndrome. Chest. 1997;111(5):1306–21. https://doi.org/10.1378/chest.111.5.1306.

    Article  CAS  PubMed  Google Scholar 

  38. Meduri GU, Headley S, Kohler G, et al. Persistent elevation of inflammatory cytokines predicts a poor outcome in ARDS. Plasma IL-1 beta and IL-6 levels are consistent and efficient predictors of outcome over time. Chest. 1995;107(4):1062–73. https://doi.org/10.1378/chest.107.4.1062.

    Article  CAS  PubMed  Google Scholar 

  39. Yang ML, Wang CT, Yang SJ, et al. IL-6 ameliorates acute lung injury in influenza virus infection. Sci Rep. 2017;7:43829. https://doi.org/10.1038/srep43829.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chen Q, Zhang E, Wang C, Zhang P, Huang L. PARP-1 Inhibition repressed imbalance of Th17 and treg cells in preterm rats with intrauterine infection-induced acute respiratory distress syndrome by reducing the expression level of IL-6. J Healthc Eng. 2022;2022:1255674. https://doi.org/10.1155/2022/1255674.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Rose-John S. Interleukin-6 family cytokines. Cold Spring Harb Perspect Biol. 2018. https://doi.org/10.1101/cshperspect.a028415.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hui L, Zhang X, An X, et al. Higher serum procalcitonin and IL-6 levels predict worse diagnosis for acute respiratory distress syndrome patients with multiple organ dysfunction. Int J Clin Exp Pathol. 2017;10(7):7401–7.

    PubMed  PubMed Central  Google Scholar 

  43. Hildebrand F, Stuhrmann M, van Griensven M, et al. Association of IL-8-251A/T polymorphism with incidence of acute respiratory distress syndrome (ARDS) and IL-8 synthesis after multiple trauma. Cytokine. 2007;37(3):192–9. https://doi.org/10.1016/j.cyto.2007.03.008.

    Article  CAS  PubMed  Google Scholar 

  44. Lowe PR, Galley HF, Abdel-Fattah A, Webster NR. Influence of interleukin-10 polymorphisms on interleukin-10 expression and survival in critically ill patients. Crit Care Med. 2003;31(1):34–8. https://doi.org/10.1097/00003246-200301000-00005.

    Article  CAS  PubMed  Google Scholar 

  45. Donnelly SC, Strieter RM, Kunkel SL, et al. Interleukin-8 and development of adult respiratory distress syndrome in at-risk patient groups. Lancet. 1993;341(8846):643–7. https://doi.org/10.1016/0140-6736(93)90416-e.

    Article  CAS  PubMed  Google Scholar 

  46. Goodman RB, Strieter RM, Martin DP, et al. Inflammatory cytokines in patients with persistence of the acute respiratory distress syndrome. Am J Respir Crit Care Med. 1996;154(3 Pt 1):602–11. https://doi.org/10.1164/ajrccm.154.3.8810593.

    Article  CAS  PubMed  Google Scholar 

  47. Matute-Bello G, Liles WC, Radella F 2nd, et al. Neutrophil apoptosis in the acute respiratory distress syndrome. Am J Respir Crit Care Med. 1997;156(6):1969–77. https://doi.org/10.1164/ajrccm.156.6.96-12081.

    Article  CAS  PubMed  Google Scholar 

  48. Rambaldi A, Young DC, Griffin JD (1987) Expression of the M-CSF (CSF-1) gene by human monocytes

  49. Seelentag W, Mermod J, Montesano R, Vassalli P. Additive effects of interleukin 1 and tumour necrosis factor-alpha on the accumulation of the three granulocyte and macrophage colony-stimulating factor mRNAs in human endothelial cells. EMBO J. 1987;6(8):2261–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Goodman ER, Kleinstein E, Fusco AM, et al. Role of interleukin 8 in the genesis of acute respiratory distress syndrome through an effect on neutrophil apoptosis. Arch Surg. 1998;133(11):1234–9. https://doi.org/10.1001/archsurg.133.11.1234.

    Article  CAS  PubMed  Google Scholar 

  51. Redant S, Angoulvant F, Barbance O, et al. Is interleukin-8 a true predictor of pediatric acute respiratory distress syndrome outcomes? Beware of potential confounders. Crit Care. 2019;23(1):233. https://doi.org/10.1186/s13054-019-2507-5.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Khemani RG, Smith LS, Zimmerman JJ, Erickson S. Pediatric acute respiratory distress syndrome: definition, incidence, and epidemiology: proceedings from the pediatric acute lung injury consensus conference. Pediatr Crit Care Med. 2015;16(5 Suppl 1):S23-40. https://doi.org/10.1097/pcc.0000000000000432.

    Article  PubMed  Google Scholar 

  53. Roman C, Dima B, Muyshont L, Schurmans T, Gilliaux O. Indications and efficiency of dapsone in IgA vasculitis (Henoch-Schonlein purpura): case series and a review of the literature. Eur J Pediatr. 2019;178(8):1275–81. https://doi.org/10.1007/s00431-019-03409-5[.

    Article  CAS  PubMed  Google Scholar 

  54. Wozel VE. Innovative use of dapsone. Dermatol Clin. 2010;28(3):599–610. https://doi.org/10.1016/j.det.2010.03.014.

    Article  CAS  PubMed  Google Scholar 

  55. Kanoh S, Tanabe T, Rubin BK. Dapsone inhibits IL-8 secretion from human bronchial epithelial cells stimulated with lipopolysaccharide and resolves airway inflammation in the ferret. Chest. 2011;140(4):980–90.

    Article  CAS  PubMed  Google Scholar 

  56. Schmidt E, Reimer S, Kruse N, Bröcker EB, Zillikens D. The IL-8 release from cultured human keratinocytes, mediated by antibodies to bullous pemphigoid autoantigen 180, is inhibited by dapsone. Clin Exp Immunol. 2001;124(1):157–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Saraiva M, Vieira P, O’Garra A. Biology and therapeutic potential of interleukin-10. J Exp Med. 2020. https://doi.org/10.1084/jem.20190418.

    Article  PubMed  Google Scholar 

  58. Wang X, Wong K, Ouyang W, Rutz S. Targeting IL-10 family cytokines for the treatment of human diseases. Cold Spring Harb Perspect Biol. 2019. https://doi.org/10.1101/cshperspect.a028548.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Chen Z, Hu Y, Xiong T, et al. IL-10 promotes development of acute respiratory distress syndrome via inhibiting differentiation of bone marrow stem cells to alveolar type 2 epithelial cells. Eur Rev Med Pharmacol Sci. 2018;22(18):6085–92. https://doi.org/10.26355/eurrev_201809_15947.

    Article  CAS  PubMed  Google Scholar 

  60. Armstrong L, Millar AB. Relative production of tumour necrosis factor alpha and interleukin 10 in adult respiratory distress syndrome. Thorax. 1997;52(5):442–6. https://doi.org/10.1136/thx.52.5.442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Parsons PE, Moss M, Vannice JL, Moore EE, Moore FA, Repine JE. Circulating IL-1ra and IL-10 levels are increased but do not predict the development of acute respiratory distress syndrome in at-risk patients. Am J Respir Crit Care Med. 1997;155(4):1469–73. https://doi.org/10.1164/ajrccm.155.4.9105096.

    Article  CAS  PubMed  Google Scholar 

  62. Roh JS, Sohn DH (2018) Damage-associated molecular patterns in inflammatory diseases. Immune network 18(4)

  63. Gong MN, Thompson BT, Williams PL, et al. Interleukin-10 polymorphism in position -1082 and acute respiratory distress syndrome. Eur Respir J. 2006;27(4):674–81. https://doi.org/10.1183/09031936.06.00046405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Donnelly SC, Strieter RM, Reid PT, et al. The association between mortality rates and decreased concentrations of interleukin-10 and interleukin-1 receptor antagonist in the lung fluids of patients with the adult respiratory distress syndrome. Ann Intern Med. 1996;125(3):191–6. https://doi.org/10.7326/0003-4819-125-3-199608010-00005.

    Article  CAS  PubMed  Google Scholar 

  65. Jin X, Hu Z, Kang Y, et al. Association of IL-10-1082 G/G genotype with lower mortality of acute respiratory distress syndrome in a Chinese population. Mol Biol Rep. 2012;39(1):1–4. https://doi.org/10.1007/s11033-010-0377-7.

    Article  CAS  PubMed  Google Scholar 

  66. Rad R, Dossumbekova A, Neu B, et al. Cytokine gene polymorphisms influence mucosal cytokine expression, gastric inflammation, and host specific colonisation during Helicobacter pylori infection. Gut. 2004;53(8):1082–9. https://doi.org/10.1136/gut.2003.029736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Capasso M, Avvisati RA, Piscopo C, et al. Cytokine gene polymorphisms in Italian preterm infants: association between interleukin-10 -1082 G/A polymorphism and respiratory distress syndrome. Pediatr Res. 2007;61(3):313–7. https://doi.org/10.1203/pdr.0b013e318030d108.

    Article  CAS  PubMed  Google Scholar 

  68. Xie M, Cheng B, Ding Y, Wang C, Chen J. Correlations of IL-17 and NF-kappaB gene polymorphisms with susceptibility and prognosis in acute respiratory distress syndrome in a chinese population. 2019. Biosci Rep. https://doi.org/10.1042/bsr20181987.

  69. Yu ZX, Ji MS, Yan J, et al. The ratio of Th17/Treg cells as a risk indicator in early acute respiratory distress syndrome. Crit Care. 2015;19:82. https://doi.org/10.1186/s13054-015-0811-2.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Rolandelli A, Hernandez Del Pino RE, Pellegrini JM, et al. The IL-17A rs2275913 single nucleotide polymorphism is associated with protection to tuberculosis but related to higher disease severity in Argentina. Sci Rep. 2017;7:40666. https://doi.org/10.1038/srep40666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bekenova N, Grjibovski A, Mukovozova L, Smail E, Tokaeva A. Rs8193036 polymorphism of IL-17A gene in a Kazakh population and its association with plasma IL-17A among erysipelas patients. Ekologiya Cheloveka (Human Ecology). 2016;4:50–5.

    Article  Google Scholar 

  72. Nakanishi K. Unique action of interleukin-18 on T cells and other immune cells. Front Immunol. 2018;9:763. https://doi.org/10.3389/fimmu.2018.00763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Antoniou KM, Tzouvelekis A, Alexandrakis MG, et al. Upregulation of Th1 cytokine profile (IL-12, IL-18) in bronchoalveolar lavage fluid in patients with pulmonary sarcoidosis. J Interferon Cytokine Res. 2006;26(6):400–5. https://doi.org/10.1089/jir.2006.26.400.

    Article  CAS  PubMed  Google Scholar 

  74. Dong G, Wang F, Xu L, Zhu M, Zhang B, Wang B. Serum interleukin-18: a novel prognostic indicator for acute respiratory distress syndrome. Medicine (Baltimore). 2019;98(21):e15529. https://doi.org/10.1097/md.0000000000015529.

    Article  CAS  PubMed  Google Scholar 

  75. Taghavi S, Jackson-Weaver O, Abdullah S, et al. Interleukin-22 mitigates acute respiratory distress syndrome (ARDS). PLoS ONE. 2021;16(10):e0254985. https://doi.org/10.1371/journal.pone.0254985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Carriere V, Roussel L, Ortega N, et al. IL-33, the IL-1-like cytokine ligand for ST2 receptor, is a chromatin-associated nuclear factor in vivo. Proc Natl Acad Sci USA. 2007;104(1):282–7. https://doi.org/10.1073/pnas.0606854104.

    Article  CAS  PubMed  Google Scholar 

  77. Maher JF, Nathans D. Multivalent DNA-binding properties of the HMG-1 proteins. Proc Natl Acad Sci USA. 1996;93(13):6716–20. https://doi.org/10.1073/pnas.93.13.6716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kostova N, Zlateva S, Ugrinova I, Pasheva E. The expression of HMGB1 protein and its receptor RAGE in human malignant tumors. Mol Cell Biochem. 2010;337(1–2):251–8. https://doi.org/10.1007/s11010-009-0305-0.

    Article  CAS  PubMed  Google Scholar 

  79. Lin X, Yang H, Sakuragi T, et al. Alpha-chemokine receptor blockade reduces high mobility group box 1 protein-induced lung inflammation and injury and improves survival in sepsis. Am J Physiol Lung Cell Mol Physiol. 2005;289(4):L583–90. https://doi.org/10.1152/ajplung.00091.2005.

    Article  CAS  PubMed  Google Scholar 

  80. Ueno H, Matsuda T, Hashimoto S, et al. Contributions of high mobility group box protein in experimental and clinical acute lung injury. Am J Respir Crit Care Med. 2004;170(12):1310–6. https://doi.org/10.1164/rccm.200402-188OC.

    Article  PubMed  Google Scholar 

  81. Paris G, Pozharskaya T, Asempa T, Lane AP. Damage-associated molecular patterns stimulate interleukin-33 expression in nasal polyp epithelial cells. Int Forum Allergy Rhinol. 2014;4(1):15–21. https://doi.org/10.1002/alr.21237.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Ullah MA, Loh Z, Gan WJ, et al. Receptor for advanced glycation end products and its ligand high-mobility group box-1 mediate allergic airway sensitization and airway inflammation. J Allergy Clin Immunol. 2014;134(2):440–50. https://doi.org/10.1016/j.jaci.2013.12.1035.

    Article  CAS  PubMed  Google Scholar 

  83. Cao J, Xu F, Lin S, et al. IL-35 is elevated in clinical and experimental sepsis and mediates inflammation. Clin Immunol. 2015;161(2):89–95.

    Article  CAS  PubMed  Google Scholar 

  84. Karimi G, Mahmoudi M, Balali-Mood M, et al. Decreased levels of spleen tissue CD4(+)CD25(+)Foxp3(+) regulatory T lymphocytes in mice exposed to berberine. J Acupunct Meridian Stud. 2017;10(2):109–13. https://doi.org/10.1016/j.jams.2016.10.003.

    Article  PubMed  Google Scholar 

  85. Risso K, Kumar G, Ticchioni M, et al. Early infectious acute respiratory distress syndrome is characterized by activation and proliferation of alveolar T-cells. Eur J Clin Microbiol Infect Dis. 2015;34(6):1111–8. https://doi.org/10.1007/s10096-015-2333-x.

    Article  CAS  PubMed  Google Scholar 

  86. Li B, Ji X, Tian F, Gong J, Zhang J, Liu T. Interleukin-37 attenuates lipopolysaccharide (LPS)-induced neonatal acute respiratory distress syndrome in young mice via inhibition of inflammation and cell apoptosis. Med Sci Monit. 2020;26:e920365. https://doi.org/10.12659/msm.920365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Arthur A, McCall PJ, Macfie A, et al. Type III procollagen as a biomarker of susceptibility to ARDS? Intens Care Med. 2015;41(3):568–9. https://doi.org/10.1007/s00134-015-3645-0.

    Article  CAS  Google Scholar 

  88. Makabe H, Kojika M, Takahashi G, et al. Interleukin-18 levels reflect the long-term prognosis of acute lung injury and acute respiratory distress syndrome. J Anesth. 2012;26(5):658–63. https://doi.org/10.1007/s00540-012-1409-3.

    Article  PubMed  Google Scholar 

  89. Aisiku IP, Yamal JM, Doshi P, et al. Plasma cytokines IL-6, IL-8, and IL-10 are associated with the development of acute respiratory distress syndrome in patients with severe traumatic brain injury. Crit Care. 2016;20:288. https://doi.org/10.1186/s13054-016-1470-7.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Liu D, Luo G, Luo C, Wang T, Sun G, Hei Z. Changes in the concentrations of mediators of inflammation and oxidative stress in exhaled breath condensate during liver transplantation and their relations with postoperative ARDS. Respir Care. 2015;60(5):679–88. https://doi.org/10.4187/respcare.03311.

    Article  PubMed  Google Scholar 

  91. Rice TW, Wheeler AP, Bernard GR, Hayden DL, Schoenfeld DA, Ware LB. Comparison of the SpO2/FIO2 ratio and the PaO2/FIO2 ratio in patients with acute lung injury or ARDS. Chest. 2007;132(2):410–7. https://doi.org/10.1378/chest.07-0617.

    Article  PubMed  Google Scholar 

  92. Swenson KE, Swenson ER. Pathophysiology of acute respiratory distress syndrome and COVID-19 lung injury. Crit Care Clin. 2021;37(4):749–76.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Thapa K, Verma N, Singh TG, Grewal AK, Kanojia N, Rani L. COVID-19-Associated acute respiratory distress syndrome (CARDS): mechanistic insights on therapeutic intervention and emerging trends. Int Immunopharmacol. 2021;101: 108328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Middleton EA, Zimmerman GA. COVID-19–associated acute respiratory distress syndrome: lessons from tissues and cells. Crit Care Clin. 2021;37(4):777–93.

    Article  PubMed Central  Google Scholar 

  95. Ramadori GP. SARS-CoV-2-infection (COVID-19): clinical course, viral acute respiratory distress syndrome (ARDS) and cause (s) of death. Medi Sci. 2022;10(4):58.

    CAS  Google Scholar 

  96. Franzetti M, Forastieri A, Borsa N, et al. IL-1 receptor antagonist anakinra in the treatment of COVID-19 acute respiratory distress syndrome: a retrospective, observational study. J Immunol. 2021;206(7):1569–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Alladina JW, Levy SD, Hibbert KA, et al. Plasma concentrations of soluble ST2 and IL-6 are predictive of successful liberation from mechanical ventilation in patients with the acute respiratory distress syndrome. Crit Care Med. 2016;44(9):1735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Groeneveld AB, Raijmakers PG, Hack CE, Thijs LG. Interleukin 8-related neutrophil elastase and the severity of the adult respiratory distress syndrome. Cytokine. 1995;7(7):746–52. https://doi.org/10.1006/cyto.1995.0089.

    Article  CAS  PubMed  Google Scholar 

  99. Lang S, Li L, Wang X, et al. CXCL10/IP-10 neutralization can ameliorate lipopolysaccharide-induced acute respiratory distress syndrome in rats. PLoS ONE. 2017;12(1): e0169100.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Adamzik M, Broll J, Steinmann J, et al. An increased alveolar CD4+ CD25+ Foxp3+ T-regulatory cell ratio in acute respiratory distress syndrome is associated with increased 30-day mortality. Intens Care Med. 2013;39:1743–51.

    Article  Google Scholar 

  101. Peng J, Tang R, Qi D, et al. (2022) Predictive value of the baseline and early changes in blood eosinophils for short-term mortality in patients with acute respiratory distress syndrome. J Inflamm Res 1845–58

Download references

Acknowledgments

The authors wish to thank all our colleagues in Allied Health Sciences School, Ahvaz Jundishapur University of Medical Sciences.

Funding

This review article received no funds.

Author information

Authors and Affiliations

Authors

Contributions

BM conceived the manuscript and revised it; RK, NS, MJ wrote the manuscript and MJ prepared the figures and tables.

Corresponding authors

Correspondence to Bahareh Moghimian-Boroujeni or Richard Eric Kast.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saki, N., Javan, M., Moghimian-Boroujeni, B. et al. Interesting effects of interleukins and immune cells on acute respiratory distress syndrome. Clin Exp Med 23, 2979–2996 (2023). https://doi.org/10.1007/s10238-023-01118-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-023-01118-w

Keywords

Navigation