Skip to main content

Advertisement

Log in

Mechanistic and therapeutic links between rheumatoid arthritis and diabetes mellitus

  • Review Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by persistent synovial inflammation and irreversible cartilage and bone damage. Despite its predominant osteoarticular and periarticular manifestations, RA is also a systematic disease associated with organ-specific extra-articular manifestation. Increasing evidence indicates that RA patients are susceptible to diabetes mellitus (DM), and RA aggravates metabolic disordered in DM, indicating the close association between RA and DM. Many factors involved in RA stimulate insulin resistance and DM development. These factors include proinflammatory cytokines (such as TNF-α, IL-6, IL-1β), RA autoantibodies (such as rheumatoid factor, cyclic citrullinated peptide antibodies), excess RA related adipokines (such as leptin, resistin, ANGPTL4), C-creative protein, and other protein (such as TXNDC5, NLRP3, RBP4). Furthermore, commonly used RA drugs, such as conventional synthetic disease-modifying antirheumatic drugs (csDMARDs), biological disease-modifying antirheumatic drugs (bDMARDs), and glucocorticoids, provide potential benefits in improving insulin resistance and inhibiting DM development. This review discusses the mechanistic and therapeutic links between RA and DM, aiming to provide valuable information for the prevention and treatment of DM in RA patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACPA:

Cyclic citrullinated peptide antibodies

AGEs:

Advanced glycation end products

AKT:

Protein kinase B

ANGPTL4:

Angiopoientin-like protein 4

bDMARDs:

Biological disease-modifying antirheumatic drugs

CPRD:

Clinical Practice Research Datalink

CRP:

C-creative protein

csDMARDs:

Conventional synthetic disease-modifying antirheumatic drugs

CTLA-4:

Cytotoxic T-lymphocyte-associated antigen 4

DAS:

Disease activity score

DKD:

Diabetic kidney disease

DM:

Diabetes mellitus

Fas:

Factor associated suicide

FasL:

Factor associated suicide ligand

FLS:

Fibroblast-like synoviocyte

GLUT4:

Glucose transporter 4

GSK-3:

Glycogen synthase kinase-3

HbA1c:

Glycated hemoglobin

HCQ:

Hydroxychloroquine

HDL-C:

High-density lipoprotein cholesterol

HOMA-IR:

Homeostatic Model Assessment of Insulin Resistance

HR:

Harzard ratio

hs-CRP:

High-sensitivity CRP

IGF-1:

Insulin-like growth factors-1

IGFBP1:

Insulin-like growth factor binding protein

IGF-IR:

Insulin-like growth factor 1 receptor

IL-1β:

Interleukin-1β

IL-6:

Interleukin-6

IRS-1:

Insulin receptor substrate-1

IRS-2:

Insulin receptor substrate-2

PI3K:

Phosphatidylinositol 3 kinase

JAK2:

Janus Kinases 2

JAKi:

Inhibitors of JAKs

JNK:

C-Jun N-terminal kinase

LDL-C:

Low-density lipoprotein cholesterol

LepRb:

Leptin receptor

MMP:

Matrix metalloproteinases

MTX:

Methotrexate

NDB:

National Data Bank

NF-κB:

Nuclear factor kappa-B

NLRP3:

NOD-like receptor protein 3

NOS:

Nitric oxide synthase

PGE2:

Prostaglandin E2

PPARγ:

Peroxisome proliferator-activated receptor γ

PTP-1B:

Protein tyrosine phosphatase 1B

RA:

Rheumatoid arthritis

RF:

Rheumatoid factor

RANKL:

Receptor Activator of Nuclear Factor-κ B Ligand

RBP4:

Retinol-binding protein 4

SOCS3:

Suppressor of cytokine signaling-3

STAT3:

Signal transducer and activator of transcription 3

TG:

Triglycerides

TLR4:

Toll-like receptor 4

TNF-α:

Tumor necrosis factor α antagonists

TNFR:

TNF receptors

TXNDC5:

Thioredoxin domain-containing protein 5

VEGF:

Vascular endothelial growth factor

References

  1. Safiri S, Kolahi AA, Hoy D, Smith E, Bettampadi D, Mansournia MA, et al. Global, regional and national burden of rheumatoid arthritis 1990–2017: a systematic analysis of the global burden of disease study 2017. Ann Rheum Dis. 2019;78(11):1463–71.

    Article  PubMed  Google Scholar 

  2. Prete M, Racanelli V, Digiglio L, Vacca A, Dammacco F, Perosa F. Extra-articular manifestations of rheumatoid arthritis: an update. Autoimmun Rev. 2011;11(2):123–31.

    Article  PubMed  Google Scholar 

  3. Hresko A, Lin TC, Solomon DH. Medical care costs associated with rheumatoid arthritis in the US: a systematic literature review and meta-analysis. Arthritis Care Res (Hoboken). 2018;70(10):1431–8.

    Article  PubMed  Google Scholar 

  4. Hu H, Luan L, Yang K, Li SC. Burden of rheumatoid arthritis from a societal perspective: a prevalence-based study on cost of this illness for patients in China. Int J Rheum Dis. 2018;21(8):1572–80.

    Article  PubMed  Google Scholar 

  5. Sakran N, Graham Y, Pintar T, Yang W, Kassir R, Willigendael EM, et al. The many faces of diabetes. Is there a need for re-classification? A narrative review. BMC Endocr Disord. 2022;22(1):9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Malone JI, Hansen BC. Does obesity cause type 2 diabetes mellitus (T2DM)? Or is it the opposite? Pediatr Diabetes. 2019;20(1):5–9.

    Article  PubMed  Google Scholar 

  7. Sampath Kumar A, Maiya AG, Shastry BA, Vaishali K, Ravishankar N, Hazari A, et al. Exercise and insulin resistance in type 2 diabetes mellitus: A systematic review and meta-analysis. Ann Phys Rehabil Med. 2019;62(2):98–103.

    Article  CAS  PubMed  Google Scholar 

  8. Choi CHJ, Cohen P. Epigenetics: How does obesity lead to insulin resistance? Elife. 2017;6:e33298.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pi H, Zhou H, Jin H, Ning Y, Wang Y. Abnormal glucose metabolism in rheumatoid arthritis. Biomed Res Int. 2017;2017:9670434.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Radovanović-Dinić B, Tešić-Rajković S, Zivkovic V, Grgov S. Clinical connection between rheumatoid arthritis and liver damage. Rheumatol Int. 2018;38(5):715–24.

    Article  PubMed  Google Scholar 

  11. Tejera-Segura B, López-Mejías R, Domínguez-Luis MJ, de Vera-González AM, González-Delgado A, Ubilla B, et al. Incretins in patients with rheumatoid arthritis. Arthritis Res Ther. 2017;19(1):229.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jiang P, Li H, Li X. Diabetes mellitus risk factors in rheumatoid arthritis: a systematic review and meta-analysis. Clin Exp Rheumatol. 2015;33(1):115–21.

    PubMed  Google Scholar 

  13. Baker JF, England BR, George M, Cannon G, Sauer B, Ogdie A, et al. Disease activity, cytokines, chemokines and the risk of incident diabetes in rheumatoid arthritis. Ann Rheum Dis. 2021;80(5):566–72.

    Article  CAS  PubMed  Google Scholar 

  14. Ruscitti P, Ursini F, Cipriani P, Ciccia F, Liakouli V, Carubbi F, et al. Prevalence of type 2 diabetes and impaired fasting glucose in patients affected by rheumatoid arthritis: results from a cross-sectional study. Medicine (Baltimore). 2017;96(34):e7896.

    Article  CAS  PubMed  Google Scholar 

  15. Jin Y, Chen SK, Liu J, Kim SC. Risk of incident type 2 diabetes mellitus among patients with rheumatoid arthritis: a population-based cohort study. Arthritis Care Res (Hoboken). 2020;72(9):1248–56.

    Article  CAS  PubMed  Google Scholar 

  16. Liu XZ, Gao Y, Fan J, Xu X, Zhang J, Gao J, et al. Metabolic abnormalities in rheumatoid arthritis patients with comorbid diabetes mellitus. Clin Rheumatol. 2018;37(1):219–26.

    Article  PubMed  Google Scholar 

  17. Ruscitti P, Ursini F, Cipriani P, Liakouli V, Carubbi F, Berardicurti O, et al. Poor clinical response in rheumatoid arthritis is the main risk factor for diabetes development in the short-term: A 1-year, single-centre, longitudinal study. PLoS ONE. 2017;12(7):e0181203.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Xie B, He J, Liu Y, Liu T, Liu C. A meta-analysis of HDL cholesterol efflux capacity and concentration in patients with rheumatoid arthritis. Lipids Health Dis. 2021;20(1):18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pierini FS, Botta E, Soriano ER, Martin M, Boero L, Meroño T, et al. Effect of tocilizumab on LDL and HDL characteristics in patients with rheumatoid arthritis. an observational study. Rheumatol Ther. 2021;8(2):803–15.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Arias de la Rosa I, Escudero-Contreras A, Rodríguez-Cuenca S, Ruiz-Ponce M, Jiménez-Gómez Y, Ruiz-Limón P, et al. Defective glucose and lipid metabolism in rheumatoid arthritis is determined by chronic inflammation in metabolic tissues. J Intern Med. 2018;284(1):61–77.

    Article  CAS  PubMed  Google Scholar 

  21. Al-Mansoori L, Al-Jaber H, Prince MS, Elrayess MA. Role of inflammatory cytokines, growth factors and adipokines in adipogenesis and insulin resistance. Inflammation. 2021;45(1):31–44.

    Article  PubMed  Google Scholar 

  22. Masuko K. Angiopoietin-like 4: A molecular link between insulin resistance and rheumatoid arthritis. J Orthop Res. 2017;35(5):939–43.

    Article  CAS  PubMed  Google Scholar 

  23. Ursini F, Russo E, D’Angelo S, Arturi F, Hribal ML, D’Antona L, et al. Prevalence of undiagnosed diabetes in rheumatoid arthritis: an OGTT study. Medicine (Baltimore). 2016;95(7):e2552.

    Article  CAS  PubMed  Google Scholar 

  24. Costa NT, Veiga Iriyoda TM, Kallaur AP, Delongui F, Alfieri DF, Lozovoy MA, et al. Influence of insulin resistance and TNF-α on the inflammatory process, oxidative stress, and disease activity in patients with rheumatoid arthritis. Oxid Med Cell Longev. 2016;2016:8962763.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yao Z, Getting SJ, Locke IC. Regulation of TNF-induced osteoclast differentiation. Cells. 2021;11(1):132.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sethi JK, Hotamisligil GS. Metabolic messengers: tumour necrosis factor. Nat Metab. 2021;3(10):1302–12.

    Article  CAS  PubMed  Google Scholar 

  27. Tse MCL, Herlea-Pana O, Brobst D, Yang X, Wood J, Hu X, et al. Tumor necrosis factor-α promotes phosphoinositide 3-kinase enhancer A and AMP-activated protein kinase interaction to suppress lipid oxidation in skeletal muscle. Diabetes. 2017;66(7):1858–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Copps KD, White MF. Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia. 2012;55(10):2565–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liang Y, Xu WD, Peng H, Pan HF, Ye DQ. SOCS signaling in autoimmune diseases: molecular mechanisms and therapeutic implications. Eur J Immunol. 2014;44(5):1265–75.

    Article  CAS  PubMed  Google Scholar 

  30. Stagakis I, Bertsias G, Karvounaris S, Kavousanaki M, Virla D, Raptopoulou A, et al. Anti-tumor necrosis factor therapy improves insulin resistance, beta cell function and insulin signaling in active rheumatoid arthritis patients with high insulin resistance. Arthritis Res Ther. 2012;14(3):R141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. van den Oever IAM, Baniaamam M, Simsek S, Raterman HG, van Denderen JC, van Eijk IC, et al. The effect of anti-TNF treatment on body composition and insulin resistance in patients with rheumatoid arthritis. Rheumatol Int. 2021;41(2):319–28.

    Article  PubMed  Google Scholar 

  32. Atzeni F, Nucera V, Masala IF, Sarzi-Puttini P, Bonitta G. Il-6 Involvement in pain, fatigue and mood disorders in rheumatoid arthritis and the effects of Il-6 inhibitor sarilumab. Pharmacol Res. 2019;149:104402.

    Article  CAS  PubMed  Google Scholar 

  33. Millrine D, Jenkins RH, Hughes STO, and Jones SA. Making sense of IL-6 signalling cues in pathophysiology. FEBS Lett. 2021.

  34. McElvaney OJ, Curley GF, Rose-John S, McElvaney NG. Interleukin-6: obstacles to targeting a complex cytokine in critical illness. Lancet Respir Med. 2021;9(6):643–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rehman K, Akash MSH, Liaqat A, Kamal S, Qadir MI, Rasul A. Role of interleukin-6 in development of insulin resistance and type 2 diabetes mellitus. Crit Rev Eukaryot Gene Expr. 2017;27(3):229–36.

    Article  PubMed  Google Scholar 

  36. Jansen K, Cevhertas L, Ma S, Satitsuksanoa P, Akdis M, van de Veen W. Regulatory B cells A to Z. Allergy. 2021;76(9):2699–715.

    Article  CAS  PubMed  Google Scholar 

  37. Akbari M, Hassan-Zadeh V. IL-6 signalling pathways and the development of type 2 diabetes. Inflammopharmacology. 2018;26(3):685–98.

    Article  CAS  PubMed  Google Scholar 

  38. Giacomelli R, Ruscitti P, Alvaro S, Ciccia F, Liakouli V, Di Benedetto P, et al. IL-1β at the crossroad between rheumatoid arthritis and type 2 diabetes: may we kill two birds with one stone? Expert Rev Clin Immunol. 2016;12(8):849–55.

    Article  CAS  PubMed  Google Scholar 

  39. Amarasekara DS, Yun H, Kim S, Lee N, Kim H, Rho J. Regulation of osteoclast differentiation by cytokine networks. Immune Netw. 2018;18(1):e8.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Aye IL, Jansson T, Powell TL. Interleukin-1β inhibits insulin signaling and prevents insulin-stimulated system A amino acid transport in primary human trophoblasts. Mol Cell Endocrinol. 2013;381(1–2):46–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kang T, Huang H, Mandrup-Poulsen T, Larsen MR. Divalent metal transporter 1 knock-down modulates IL-1β mediated pancreatic beta-cell pro-apoptotic signaling pathways through the autophagic machinery. Int J Mol Sci. 2021;22(15):8013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu C, Feng X, Li Q, Wang Y, Li Q, Hua M. Adiponectin, TNF-α and inflammatory cytokines and risk of type 2 diabetes: A systematic review and meta-analysis. Cytokine. 2016;86:100–9.

    Article  CAS  PubMed  Google Scholar 

  43. Ruscitti P, Masedu F, Alvaro S, Airò P, Battafarano N, Cantarini L, et al. Anti-interleukin-1 treatment in patients with rheumatoid arthritis and type 2 diabetes (TRACK): A multicentre, open-label, randomised controlled trial. PLoS Med. 2019;16(9):e1002901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sokolove J, Johnson DS, Lahey LJ, Wagner CA, Cheng D, Thiele GM, et al. Rheumatoid factor as a potentiator of anti-citrullinated protein antibody-mediated inflammation in rheumatoid arthritis. Arthritis Rheumatol. 2014;66(4):813–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Laurent L, Anquetil F, Clavel C, Ndongo-Thiam N, Offer G, Miossec P, et al. IgM rheumatoid factor amplifies the inflammatory response of macrophages induced by the rheumatoid arthritis-specific immune complexes containing anticitrullinated protein antibodies. Ann Rheum Dis. 2015;74(7):1425–31.

    Article  CAS  PubMed  Google Scholar 

  46. Takeuchi T, Miyasaka N, Inui T, Yano T, Yoshinari T, Abe T, et al. High titers of both rheumatoid factor and anti-CCP antibodies at baseline in patients with rheumatoid arthritis are associated with increased circulating baseline TNF level, low drug levels, and reduced clinical responses: a post hoc analysis of the RISING study. Arthritis Res Ther. 2017;19(1):194.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Derksen V, Huizinga TWJ, van der Woude D. The role of autoantibodies in the pathophysiology of rheumatoid arthritis. Semin Immunopathol. 2017;39(4):437–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Umeda N, Matsumoto I, Sumida T. The pathogenic role of ACPA in rheumatoid arthritis. Nihon Rinsho Meneki Gakkai Kaishi. 2017;40(6):391–5.

    Article  CAS  PubMed  Google Scholar 

  49. Dong X, Zheng Z, Lin P, Fu X, Li F, Jiang J, et al. ACPAs promote IL-1beta production in rheumatoid arthritis by activating the NLRP3 inflammasome. Cell Mol Immunol. 2020;17(3):261–71.

    Article  CAS  PubMed  Google Scholar 

  50. Dong X, Zheng Z, Lin P, Fu X, Li F, Jiang J, et al. ACPAs promote IL-1β production in rheumatoid arthritis by activating the NLRP3 inflammasome. Cell Mol Immunol. 2020;17(3):261–71.

    Article  CAS  PubMed  Google Scholar 

  51. Recinella L, Orlando G, Ferrante C, Chiavaroli A, Brunetti L, Leone S. Adipokines: new potential therapeutic target for obesity and metabolic, rheumatic, and cardiovascular diseases. Front Physiol. 2020;11:578966.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Rho YH, Chung CP, Solus JF, Raggi P, Oeser A, Gebretsadik T, et al. Adipocytokines, insulin resistance, and coronary atherosclerosis in rheumatoid arthritis. Arthritis Rheum. 2010;62(5):1259–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Steinz MM, Santos-Alves E, Lanner JT. Skeletal muscle redox signaling in rheumatoid arthritis. Clin Sci (Lond). 2020;134(21):2835–50.

    Article  CAS  PubMed  Google Scholar 

  54. Corrado A, Colia R, Rotondo C, Sanpaolo E, Cantatore FP. Changes in serum adipokines profile and insulin resistance in patients with rheumatoid arthritis treated with anti-TNF-α. Curr Med Res Opin. 2019;35(12):2197–205.

    Article  CAS  PubMed  Google Scholar 

  55. Kang Y, Park HJ, Kang MI, Lee HS, Lee SW, Lee SK, et al. Adipokines, inflammation, insulin resistance, and carotid atherosclerosis in patients with rheumatoid arthritis. Arthritis Res Ther. 2013;15(6):R194.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Olama SM, Senna MK, Elarman M. Synovial/serum leptin ratio in rheumatoid arthritis: the association with activity and erosion. Rheumatol Int. 2012;32(3):683–90.

    Article  CAS  PubMed  Google Scholar 

  57. Hivert MF, Sullivan LM, Fox CS, Nathan DM, D’Agostino RB Sr, Wilson PW, et al. Associations of adiponectin, resistin, and tumor necrosis factor-alpha with insulin resistance. J Clin Endocrinol Metab. 2008;93(8):3165–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Han H, Zhou W. Leptin and its derivatives: a potential target for autoimmune diseases. Curr Drug Targets. 2019;20(15):1563–71.

    Article  CAS  PubMed  Google Scholar 

  59. Evans MC, Lord RA, Anderson GM. Multiple leptin signalling pathways in the control of metabolism and fertility: a means to different ends? Int J Mol Sci. 2021;22(17):9210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. El Jammal T, Sève P, Gerfaud-Valentin M, Jamilloux Y. State of the art: approved and emerging JAK inhibitors for rheumatoid arthritis. Expert Opin Pharmacother. 2021;22(2):205–18.

    Article  PubMed  Google Scholar 

  61. Favoino E, Prete M, Catacchio G, Ruscitti P, Navarini L, Giacomelli R, et al. Working and safety profiles of JAK/STAT signaling inhibitors Are these small molecules also smart? Autoimmun Rev. 2021;20(3):102750.

    Article  CAS  PubMed  Google Scholar 

  62. Boström EA, Svensson M, Andersson S, Jonsson IM, Ekwall AK, Eisler T, et al. Resistin and insulin/insulin-like growth factor signaling in rheumatoid arthritis. Arthritis Rheum. 2011;63(10):2894–904.

    Article  PubMed  Google Scholar 

  63. Saeedi Borujeni MJ, Esfandiary E, Taheripak G, Codoñer-Franch P, Alonso-Iglesias E, Mirzaei H. Molecular aspects of diabetes mellitus: resistin, microRNA, and exosome. J Cell Biochem. 2018;119(2):1257–72.

    Article  CAS  PubMed  Google Scholar 

  64. Engin A. The pathogenesis of obesity-associated adipose tissue inflammation. Adv Exp Med Biol. 2017;960:221–45.

    Article  CAS  PubMed  Google Scholar 

  65. Makoveichuk E, Ruge T, Nilsson S, Södergren A, Olivecrona G. High concentrations of angiopoietin-like protein 4 detected in serum from patients with rheumatoid arthritis can be explained by non-specific antibody reactivity. PLoS ONE. 2017;12(1):e0168922.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Knowles HJ. Multiple roles of angiopoietin-like 4 in osteolytic disease. Front Endocrinol (Lausanne). 2017;8:80.

    Article  PubMed  Google Scholar 

  67. Swales C, Athanasou NA, Knowles HJ. Angiopoietin-like 4 is over-expressed in rheumatoid arthritis patients: association with pathological bone resorption. PLoS ONE. 2014;9(10):e109524.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Gusarova V, O’Dushlaine C, Teslovich TM, Benotti PN, Mirshahi T, Gottesman O, et al. Genetic inactivation of ANGPTL4 improves glucose homeostasis and is associated with reduced risk of diabetes. Nat Commun. 2018;9(1):2252.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Guo L, Li SY, Ji FY, Zhao YF, Zhong Y, Lv XJ, et al. Role of Angptl4 in vascular permeability and inflammation. Inflamm Res. 2014;63(1):13–22.

    Article  CAS  PubMed  Google Scholar 

  70. Shapiro SC. Biomarkers in rheumatoid arthritis. Cureus. 2021;13(5):e15063.

    PubMed  PubMed Central  Google Scholar 

  71. Pope JE, Choy EH. C-reactive protein and implications in rheumatoid arthritis and associated comorbidities. Semin Arthritis Rheum. 2021;51(1):219–29.

    Article  CAS  PubMed  Google Scholar 

  72. Mugabo Y, Li L, Renier G. The connection between C-reactive protein (CRP) and diabetic vasculopathy. Focus on preclinical findings. Curr Diabetes Rev. 2010;6(1):27–34.

    Article  CAS  PubMed  Google Scholar 

  73. Neale EP, Batterham MJ, Tapsell LC. Consumption of a healthy dietary pattern results in significant reductions in C-reactive protein levels in adults: a meta-analysis. Nutr Res. 2016;36(5):391–401.

    Article  CAS  PubMed  Google Scholar 

  74. Xu JW, Morita I, Ikeda K, Miki T, Yamori Y. C-reactive protein suppresses insulin signaling in endothelial cells: role of spleen tyrosine kinase. Mol Endocrinol. 2007;21(2):564–73.

    Article  CAS  PubMed  Google Scholar 

  75. Horna-Terrón E, Pradilla-Dieste A, Sánchez-de-Diego C, Osada J. TXNDC5, a newly discovered disulfide isomerase with a key role in cell physiology and pathology. Int J Mol Sci. 2014;15(12):23501–18.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Li J, Xu B, Wu C, Yan X, Zhang L, Chang X. TXNDC5 contributes to rheumatoid arthritis by down-regulating IGFBP1 expression. Clin Exp Immunol. 2018;192(1):82–94.

    Article  CAS  PubMed  Google Scholar 

  77. Chawsheen HA, Ying Q, Jiang H, Wei Q. A critical role of the thioredoxin domain containing protein 5 (TXNDC5) in redox homeostasis and cancer development. Genes Dis. 2018;5(4):312–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Guo C, Fu R, Wang S, Huang Y, Li X, Zhou M, et al. NLRP3 inflammasome activation contributes to the pathogenesis of rheumatoid arthritis. Clin Exp Immunol. 2018;194(2):231–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shen HH, Yang YX, Meng X, Luo XY, Li XM, Shuai ZW, et al. NLRP3: A promising therapeutic target for autoimmune diseases. Autoimmun Rev. 2018;17(7):694–702.

    Article  CAS  PubMed  Google Scholar 

  80. Tannahill GM, O’Neill LA. The emerging role of metabolic regulation in the functioning of Toll-like receptors and the NOD-like receptor Nlrp3. FEBS Lett. 2011;585(11):1568–72.

    Article  CAS  PubMed  Google Scholar 

  81. Vandanmagsar B, Youm YH, Ravussin A, Galgani JE, Stadler K, Mynatt RL, et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med. 2011;17(2):179–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Stienstra R, van Diepen JA, Tack CJ, Zaki MH, van de Veerdonk FL, Perera D, et al. Inflammasome is a central player in the induction of obesity and insulin resistance. Proc Natl Acad Sci U S A. 2011;108(37):15324–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ferraz-Amaro I, Gonzalez-Gay MA, Diaz-Gonzalez F. Retinol-binding protein 4 in rheumatoid arthritis-related insulin resistance and beta-cell function. J Rheumatol. 2014;41(4):658–65.

    Article  CAS  PubMed  Google Scholar 

  84. Mun S, Lee J, Park M, Shin J, Lim MK, Kang HG. Serum biomarker panel for the diagnosis of rheumatoid arthritis. Arthritis Res Ther. 2021;23(1):31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wei Y, Xia N, Zhang W, Huang J, Ren Z, Zhu L, et al. Serum retinol-binding protein 4 is associated with insulin resistance in patients with early and untreated rheumatoid arthritis. Joint Bone Spine. 2019;86(3):335–41.

    Article  CAS  PubMed  Google Scholar 

  86. Boaghi A, Pop RM, Vasilache SL, Banescu C, Hutanu A, Marginean OC, et al. Plasma RBP4 level in association with body composition, metabolic profile, STRA6 and RBP4 gene polymorphisms in obese romanian children. Diabetes Metab Syndr Obes. 2020;13:4643–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Norseen J, Hosooka T, Hammarstedt A, Yore MM, Kant S, Aryal P, et al. Retinol-binding protein 4 inhibits insulin signaling in adipocytes by inducing proinflammatory cytokines in macrophages through a c-Jun N-terminal kinase- and toll-like receptor 4-dependent and retinol-independent mechanism. Mol Cell Biol. 2012;32(10):2010–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ursini F, Salvatore DA, Russo E, Ammerata G, Abenavoli L, Mauro D, et al. Serum complement C3 and type 2 diabetes in rheumatoid arthritis: a case-control study. Rev Recent Clin Trials. 2018;13(3):215–21.

    Article  CAS  PubMed  Google Scholar 

  89. Ursini F, D’Angelo S, Russo E, Arturi F, D’Antona L, Bruno C, et al. Serum complement C3 strongly correlates with whole-body insulin sensitivity in rheumatoid arthritis. Clin Exp Rheumatol. 2017;35(1):18–23.

    PubMed  Google Scholar 

  90. Al Haj Ahmad RM, Al-Domi HA. Complement 3 serum levels as a pro-inflammatory biomarker for insulin resistance in obesity. Diabetes Metab Syndr. 2017;11(Suppl 1):S229–32.

    Article  PubMed  Google Scholar 

  91. Solomon DH, Massarotti E, Garg R, Liu J, Canning C, Schneeweiss S. Association between disease-modifying antirheumatic drugs and diabetes risk in patients with rheumatoid arthritis and psoriasis. JAMA. 2011;305(24):2525–31.

    Article  CAS  PubMed  Google Scholar 

  92. Lin C, Ji H, Cai X, Yang W, Lv F, Ji L. The association between the biological disease-modifying anti-rheumatic drugs and the incidence of diabetes: A systematic review and meta-analysis. Pharmacol Res. 2020;161:105216.

    Article  CAS  PubMed  Google Scholar 

  93. Xie W, Yang X, Ji L, Zhang Z. Incident diabetes associated with hydroxychloroquine, methotrexate, biologics and glucocorticoids in rheumatoid arthritis: A systematic review and meta-analysis. Semin Arthritis Rheum. 2020;50(4):598–607.

    Article  CAS  PubMed  Google Scholar 

  94. Li HZ, Xu XH, Lin N, Lu HD. Metabolic and cardiovascular benefits of hydroxychloroquine in patients with rheumatoid arthritis: a systematic review and meta-analysis. Ann Rheum Dis. 2019;78(3):e21.

    Article  PubMed  Google Scholar 

  95. Ozen G, Pedro S, Holmqvist ME, Avery M, Wolfe F, Michaud K. Risk of diabetes mellitus associated with disease-modifying antirheumatic drugs and statins in rheumatoid arthritis. Ann Rheum Dis. 2017;76(5):848–54.

    Article  PubMed  Google Scholar 

  96. Lillegraven S, Greenberg JD, Reed GW, Saunders K, Curtis JR, Harrold L, et al. Immunosuppressive treatment and the risk of diabetes in rheumatoid arthritis. PLoS ONE. 2019;14(1):e0210459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Perdan-Pirkmajer K, Pirkmajer S, Thevis M, Thomas A, Praprotnik S, Hočevar A, et al. Methotrexate reduces HbA1c concentration but does not produce chronic accumulation of ZMP in patients with rheumatoid or psoriatic arthritis. Scand J Rheumatol. 2016;45(5):347–55.

    Article  CAS  PubMed  Google Scholar 

  98. Baghdadi LR. Effect of methotrexate use on the development of type 2 diabetes in rheumatoid arthritis patients: A systematic review and meta-analysis. PLoS ONE. 2020;15(7):e0235637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mantravadi S, George M, Brensinger C, Du M, Baker JF, Ogdie A. Impact of tumor necrosis factor inhibitors and methotrexate on diabetes mellitus among patients with inflammatory arthritis. BMC Rheumatol. 2020;4:39.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Thornton CC, Al-Rashed F, Calay D, Birdsey GM, Bauer A, Mylroie H, et al. Methotrexate-mediated activation of an AMPK-CREB-dependent pathway: a novel mechanism for vascular protection in chronic systemic inflammation. Ann Rheum Dis. 2016;75(2):439–48.

    Article  CAS  PubMed  Google Scholar 

  101. Antohe JL, Bili A, Sartorius JA, Kirchner HL, Morris SJ, Dancea S, et al. Diabetes mellitus risk in rheumatoid arthritis: reduced incidence with anti-tumor necrosis factor α therapy. Arthritis Care Res (Hoboken). 2012;64(2):215–21.

    Article  CAS  PubMed  Google Scholar 

  102. Wang CR, Tsai HW. Anti- and non-tumor necrosis factor-α-targeted therapies effects on insulin resistance in rheumatoid arthritis, psoriatic arthritis and ankylosing spondylitis. World J Diabetes. 2021;12(3):238–60.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Otsuka Y, Kiyohara C, Kashiwado Y, Sawabe T, Nagano S, Kimoto Y, et al. Effects of tumor necrosis factor inhibitors and tocilizumab on the glycosylated hemoglobin levels in patients with rheumatoid arthritis; an observational study. PLoS ONE. 2018;13(4):e0196368.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Romano C, Del Mastro A, Sellitto A, Solaro E, Esposito S, Cuomo G. Tocilizumab reduces complement C3 and C4 serum levels in rheumatoid arthritis patients. Clin Rheumatol. 2018;37(6):1695–700.

    Article  PubMed  Google Scholar 

  105. Schultz O, Oberhauser F, Saech J, Rubbert-Roth A, Hahn M, Krone W, et al. Effects of inhibition of interleukin-6 signalling on insulin sensitivity and lipoprotein (a) levels in human subjects with rheumatoid diseases. PLoS ONE. 2010;5(12):e14328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Castañeda S, Remuzgo-Martínez S, López-Mejías R, Genre F, Calvo-Alén J, Llorente I, et al. Rapid beneficial effect of the IL-6 receptor blockade on insulin resistance and insulin sensitivity in non-diabetic patients with rheumatoid arthritis. Clin Exp Rheumatol. 2019;37(3):465–73.

    PubMed  Google Scholar 

  107. Tournadre A, Pereira B, Dutheil F, Giraud C, Courteix D, Sapin V, et al. Changes in body composition and metabolic profile during interleukin 6 inhibition in rheumatoid arthritis. J Cachexia Sarcopenia Muscle. 2017;8(4):639–46.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Yip RML, Yim CW. Role of interleukin 6 inhibitors in the management of rheumatoid arthritis. J Clin Rheumatol. 2021;27(8):e516–24.

    Article  PubMed  Google Scholar 

  109. Larsen CM, Faulenbach M, Vaag A, Vølund A, Ehses JA, Seifert B, et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med. 2007;356(15):1517–26.

    Article  CAS  PubMed  Google Scholar 

  110. Genovese MC, Burmester GR, Hagino O, Thangavelu K, Iglesias-Rodriguez M, John GS, et al. Interleukin-6 receptor blockade or TNFα inhibition for reducing glycaemia in patients with RA and diabetes: post hoc analyses of three randomised, controlled trials. Arthritis Res Ther. 2020;22(1):206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ruscitti P, Ursini F, Cipriani P, Greco M, Alvaro S, Vasiliki L, et al. IL-1 inhibition improves insulin resistance and adipokines in rheumatoid arthritis patients with comorbid type 2 diabetes: An observational study. Medicine (Baltimore). 2019;98(7):e14587.

    Article  CAS  PubMed  Google Scholar 

  112. Esser N, Paquot N, Scheen AJ. Anti-inflammatory agents to treat or prevent type 2 diabetes, metabolic syndrome and cardiovascular disease. Expert Opin Investig Drugs. 2015;24(3):283–307.

    Article  CAS  PubMed  Google Scholar 

  113. Angelini J, Talotta R, Roncato R, Fornasier G, Barbiero G, Dal Cin L, et al. JAK-inhibitors for the treatment of rheumatoid arthritis: a focus on the present and an outlook on the future. Biomolecules. 2020;10(7):1002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Witte T. Janus kinase inhibitors. Z Rheumatol. 2021.

  115. Chen J, Yue J, Liu Y, Liu J, Jiao K, Teng M, et al. Blocking of STAT-3/SREBP1-mediated glucose-lipid metabolism is involved in dietary phytoestrogen-inhibited ovariectomized-induced body weight gain in rats. J Nutr Biochem. 2018;61:17–23.

    Article  CAS  PubMed  Google Scholar 

  116. Barclay JL, Nelson CN, Ishikawa M, Murray LA, Kerr LM, McPhee TR, et al. GH-dependent STAT5 signaling plays an important role in hepatic lipid metabolism. Endocrinology. 2011;152(1):181–92.

    Article  CAS  PubMed  Google Scholar 

  117. Richard AJ, Stephens JM. The role of JAK-STAT signaling in adipose tissue function. Biochim Biophys Acta. 2014;1842(3):431–9.

    Article  CAS  PubMed  Google Scholar 

  118. Gurzov EN, Stanley WJ, Pappas EG, Thomas HE, Gough DJ. The JAK/STAT pathway in obesity and diabetes. Febs J. 2016;283(16):3002–15.

    Article  CAS  PubMed  Google Scholar 

  119. Brosius FC, Tuttle KR, Kretzler M. JAK inhibition in the treatment of diabetic kidney disease. Diabetologia. 2016;59(8):1624–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Burrell JA, Boudreau A, Stephens JM. Latest advances in STAT signaling and function in adipocytes. Clin Sci (Lond). 2020;134(6):629–39.

    Article  CAS  PubMed  Google Scholar 

  121. Menshawey R, Menshawey E, Alserr AHK, Abdelmassih AF. JAK out of the Box; The Rationale behind Janus Kinase Inhibitors in the COVID-19 setting, and their potential in obese and diabetic populations. Cardiovasc Endocrinol Metab. 2021;10(2):80–8.

    Article  CAS  PubMed  Google Scholar 

  122. Kim S, Kim HS, Chung KW, Oh SH, Yun JW, Im SH, et al. Essential role for signal transducer and activator of transcription-1 in pancreatic beta-cell death and autoimmune type 1 diabetes of nonobese diabetic mice. Diabetes. 2007;56(10):2561–8.

    Article  CAS  PubMed  Google Scholar 

  123. LiverTox: Clinical and research information on drug-induced liver injury. Bethesda (MD); 2012.

  124. Liu M, Yu Y, Hu S. A review on applications of abatacept in systemic rheumatic diseases. Int Immunopharmacol. 2021;96:107612.

    Article  CAS  PubMed  Google Scholar 

  125. Sarmiento-Monroy JC, Parada-Arias L, Rodríguez-López M, Rodríguez-Jiménez M, Molano-González N, Rojas-Villarraga A, et al. Subcutaneous abatacept in rheumatoid arthritis: A real-life experience. J Transl Autoimmun. 2019;2:100016.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Scherholz ML, Schlesinger N, Androulakis IP. Chronopharmacology of glucocorticoids. Adv Drug Deliv Rev. 2019;151–152:245–61.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Wilson JC, Sarsour K, Gale S, Pethö-Schramm A, Jick SS, Meier CR. Incidence and risk of glucocorticoid-associated adverse effects in patients with rheumatoid arthritis. Arthritis Care Res (Hoboken). 2019;71(4):498–511.

    Article  PubMed  Google Scholar 

  128. Wu J, Mackie SL, Pujades-Rodriguez M. Glucocorticoid dose-dependent risk of type 2 diabetes in six immune-mediated inflammatory diseases: a population-based cohort analysis. BMJ Open Diabetes Res Care. 2020;8(1):e001220.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Movahedi M, Beauchamp ME, Abrahamowicz M, Ray DW, Michaud K, Pedro S, et al. Risk of Incident Diabetes Mellitus Associated With the Dosage and Duration of Oral Glucocorticoid Therapy in Patients With Rheumatoid Arthritis. Arthritis Rheumatol. 2016;68(5):1089–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Vandewalle J, Luypaert A, De Bosscher K, Libert C. Therapeutic Mechanisms of Glucocorticoids. Trends Endocrinol Metab. 2018;29(1):42–54.

    Article  CAS  PubMed  Google Scholar 

  131. Hoes JN, van der Goes MC, van Raalte DH, van der Zijl NJ, den Uyl D, Lems WF, et al. Glucose tolerance, insulin sensitivity and β-cell function in patients with rheumatoid arthritis treated with or without low-to-medium dose glucocorticoids. Ann Rheum Dis. 2011;70(11):1887–94.

    Article  CAS  PubMed  Google Scholar 

  132. Strehl C, Bijlsma JW, de Wit M, Boers M, Caeyers N, Cutolo M, et al. Defining conditions where long-term glucocorticoid treatment has an acceptably low level of harm to facilitate implementation of existing recommendations: viewpoints from an EULAR task force. Ann Rheum Dis. 2016;75(6):952–7.

    Article  CAS  PubMed  Google Scholar 

  133. Inamo J, Kochi Y, Takeuchi T. Is type 2 diabetes mellitus an inverse risk factor for the development of rheumatoid arthritis? J Hum Genet. 2021;66(2):219–23.

    Article  PubMed  Google Scholar 

  134. Tentolouris A, Thanopoulou A, Tentolouris N, Eleftheriadou I, Voulgari C, Andrianakos A, et al. Low prevalence of rheumatoid arthritis among patients with pre-existing type 2 diabetes mellitus. Ann Transl Med. 2018;6(20):399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Semb AG, Rollefstad S, Ikdahl E, Wibetoe G, Sexton J, Crowson C, et al. Diabetes mellitus and cardiovascular risk management in patients with rheumatoid arthritis: an international audit. RMD Open. 2021;7(2).

  136. Lu MC, Yan ST, Yin WY, Koo M, Lai NS. Risk of rheumatoid arthritis in patients with type 2 diabetes: a nationwide population-based case-control study. PLoS ONE. 2014;9(7):e101528.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 81972133, 82172482, 81670806), the Fundamental Research Funds for the Central Universities (No. xzy012019094), and the Natural Science Basic Research Program of Shaanxi (No. 2020JM-365).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhufang Tian or Yan Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Chen, Y., Liu, Q. et al. Mechanistic and therapeutic links between rheumatoid arthritis and diabetes mellitus. Clin Exp Med 23, 287–299 (2023). https://doi.org/10.1007/s10238-022-00816-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-022-00816-1

Keywords

Navigation