Skip to main content

Advertisement

Log in

Immunotherapeutic strategies for treatment of hepatocellular carcinoma with antigen-loaded dendritic cells: in vivo study

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma (HCC) is one of the major health problems in the world. DCs-based vaccines are a promising immunotherapeutic strategy that aims at the optimal for induction of a specific antitumor immune response and destruction of tumor cells. The present study was conducted to investigate the immunogenic characters of whole tumor lysate-pulsed DCs vaccine and its ability to induce a specific antitumor immune response in HCC mice model. We also evaluate the effectiveness of prophylactic and therapeutic immunization strategies against HCC in mice models. Mice-derived DCs were in vitro loaded with whole tumor lysate prepared from liver tissue of HCC mice and evaluated for expression of surface maturation markers CD83 and CD86. In vivo immunization of mice with whole tumor lysate-pulsed DCs was performed in two strategies; prophylactic (pre-exposure to HCC) and therapeutic (post-exposure to HCC). Effectiveness of both protocols was investigated in terms of histopathological examination of liver sections and measurement of serum levels of immune cytokines interferon-γ (IFN-γ) and interleukin-2 (IL-2). Loading of DCs with whole tumor cell lysate exhibited a significant increase in expression of CD83 and CD86. In vivo administration of prophylactic doses of whole tumor lysate-pulsed DCs in mice before induction of HCC evokes a strong antitumor immune response presented by absence of malignant cells in liver sections and the significant increase in IFN-γ and IL-2. Data herein indicated that prophylactic vaccination with whole tumor lysate-pulsed DCs exhibited an effective antitumor immune response against HCC more than therapeutic protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CTLs:

Cytotoxic T-lymphocytes

DCs:

Dendritic cells

GM-CSF:

Granulocyte macrophage colony-stimulating factor

HCC:

Hepatocellular carcinoma

IL-4:

Interleukin-4

IL-2:

Interleukin-2

IFN-γ:

Interferon-γ

PBMN:

Peripheral blood monocytes

TAAs:

Tumor-associated antigens

References

  1. Greten TF, Duffy AG, Korangy F. Hepatocellular carcinoma from an immunologic perspective. Clin Cancer Res. 2013;19(24):6678–85.

    Article  CAS  Google Scholar 

  2. Palucka K, Banchereau J. Dendritic-cell-based therapeutic cancer vaccines. Immunity. 2013;39:38–48.

    Article  CAS  Google Scholar 

  3. Han Y, Wu Y, Yang C, et al. Dynamic and specific immune responses against multiple tumor antigens were elicited in patients with hepatocellular carcinoma after cell-based immunotherapy. J Transl Med. 2017;15(1):64.

    Article  CAS  Google Scholar 

  4. Miamen AG, Dong H, RoMiamen AG, Dong H, Roberts LR. Immunotherapeutic approaches to hepatocellular carcinoma treatment. Liver Cancer. 2012;1(3–4):226–37.

    Article  CAS  Google Scholar 

  5. Rai V, Abdo J, Alsuwaidan AN, Agrawal S, Sharma P, Agrawal DK. Cellular and molecular targets for the immunotherapy of hepatocellular carcinoma. Mol Cell Biochem. 2017. https://doi.org/10.1007/s11010-017-3092-z.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Takahara A, Koido S, Ito M, et al. Gemcitabine enhances Wilms’ tumor gene WT1 expression and sensitizes human pancreatic cancer cells with WT1-specific T-cell-mediated antitumor immune response. Cancer Immunol Immunother. 2011;60:1289–97.

    Article  CAS  Google Scholar 

  7. Santos PM, Butterfield LH. Dendritic cell-based cancer vaccines. J Immunol. 2018;200(2):443–9.

    Article  CAS  Google Scholar 

  8. Hutten TJ, Thordardottir S, Fredrix H, et al. CLEC12A-mediated antigen uptake and cross-presentation by human dendritic cell subsets efficiently boost tumor-reactive T cell responses. J Immunol. 2016;197(7):2715–25.

    Article  CAS  Google Scholar 

  9. Cohn L, Delamarre L. Dendritic cell-targeted vaccines. Front Immunol. 2014;5:255.

    Article  Google Scholar 

  10. Wang W-H, Zhou C-H, Ding J, et al. Immune effect and safety evaluation of vaccine prepared by dendritic cells modified by rAAV-carrying BCSG1 gene. Gene Ther. 2016;23:839–45.

    Article  CAS  Google Scholar 

  11. Kajihara M, Takakura K, Ohkusa T, Koido S. The impact of dendritic cell-tumor fusion cells on cancer vaccines-past progress and future strategies. Immunotherapy. 2015;7:1111–22.

    Article  CAS  Google Scholar 

  12. Lin C-F, Lin C-M, Lee K-Y, et al. Escape from IFN-γ-dependent immunosurveillance in tumorigenesis. J Biomed Sci. 2017;24:10.

    Article  Google Scholar 

  13. Beatty GL, Gladney WL. Immune escape mechanisms as a guide for cancer immunotherapy. Clin Cancer Res. 2015;21(4):687–92.

    Article  CAS  Google Scholar 

  14. Chang YP, Chen CL, Chen SO, et al. Autophagy facilitates an IFN-gamma response and signal transduction. Microbes Infect. 2011;13(11):888–94.

    Article  CAS  Google Scholar 

  15. Jiang T, Zhou C, Ren S. Role of IL-2 in cancer immunotherapy. Oncoimmunology. 2016;5(6):e1163462. https://doi.org/10.1080/2162402X.2016.1163462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Skrombolas D, Frelinger JG. Challenges and developing solutions for increasing the benefits of IL-2 treatment in tumor therapy. Expert Rev Clin Immunol. 2014;10:207–17.

    Article  CAS  Google Scholar 

  17. Wang Q, Luan W, Warren L, Kadri H, Kim KW, Goz V, Blank S, Isabel Fiel M, Hiotis SP. Autologous tumor cell lysate-loaded dendritic cell vaccine inhibited tumor progression in an orthotopic murine model for hepatocellular carcinoma. Ann Surg Oncol. 2016;23(Suppl 5):574–82.

    Article  Google Scholar 

  18. Fecek RJ, Storkus WJ. Combination strategies to enhance the potency of monocyte-derived dendritic cell-based cancer vaccines. Immunotherapy. 2016;8(10):1205–18.

    Article  CAS  Google Scholar 

  19. Shen J, Wang LF, Zou ZY, Kong WW, Yan J, Meng FY, Chen FJ, Du J, Shao J, Xu QP, Ren HZ, Li RT, Wei J, Qian XP, Liu BR. Phase I clinical study of personalized peptide vaccination combined with radiotherapy for advanced hepatocellular carcinoma. World J Gastroenterol. 2017;23(29):5395–404.

    Article  Google Scholar 

  20. Zeng J, Huang X, Zhou L, et al. Metabolomics identifies biomarker pattern for early diagnosis of hepatocellular carcinoma: from diethylnitrosamine treated rats to patients. Sci Rep. 2015;5:16101. https://doi.org/10.1038/srep16101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Markov OV, Mironova NL, Sennikov SV, Vlassov VV, Zenkova MA. Prophylactic dendritic cell-based vaccines efficiently inhibit metastases in murine metastatic melanoma. PLoS ONE. 2015;10(9):e0136911. https://doi.org/10.1371/journal.pone.0136911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lasky JL 3rd, Panosyan EH, Plant A, et al. Autologous tumor lysate-pulsed dendritic cell immunotherapy for pediatric patients with newly diagnosed or recurrent high-grade gliomas. Anticancer Res. 2013;33(5):2047–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Fleury P, Eberhard R. Determination of proteins in human milk by the biuret technic. Ann Biol Clin (Paris). 1955;13(1–2):1–7.

    CAS  Google Scholar 

  24. Yewdall AW, Drutman SB, Jinwala F, Bahjat KS, Bhardwaj N. CD8+ T cell priming by dendritic cell vaccines requires antigen transfer to endogenous antigen presenting cells. PLoS ONE. 2010. https://doi.org/10.1371/journal.pone.0011144.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Magalhães A, Ferreira KS, Almeida SR, Nosanchuk JD, Travassos LR, Taborda CP. Prophylactic and therapeutic vaccination using dendritic cells primed with peptide 10 derived from the 43-kilodalton glycoprotein of Paracoccidioides brasiliensis. Clin Vaccine Immunol. 2012;19(1):23–9.

    Article  Google Scholar 

  26. Palucka K, Banchereau J. Dendritic cell-based cancer therapeutic vaccines. Immunity. 2013;39(1):38–48.

    Article  CAS  Google Scholar 

  27. El-Ashmawy NE, El-Bahrawy HA, Shamloula MM, El-Feky OA. Biochemical/metabolic changes associated with hepatocellular carcinoma development in mice. Tumour Biol. 2014;35(6):5459–66.

    Article  CAS  Google Scholar 

  28. Garg AD, Vandenberk L, Koks C, et al. Dendritic cell vaccines based on immunogenic cell death elicit danger signals and T cell-driven rejection of high-grade glioma. Sci Transl Med. 2016;8(328):328ra27. https://doi.org/10.1126/scitranslmed.aae0105.

    Article  CAS  PubMed  Google Scholar 

  29. Schmidt K, Seeger K, Scheibenbogen C, et al. Histone deacetylase inhibition improves differentiation of dendritic cells from leukemic blasts of patients with TEL/AML1-positive acute lymphoblastic leukemia. J Leukoc Biol. 2009;85(3):563–73.

    Article  CAS  Google Scholar 

  30. Mehrotra S, Britten CD, Chin S, et al. Vaccination with poly(IC:LC) and peptide-pulsed autologous dendritic cells in patients with pancreatic cancer. J Hematol Oncol. 2017;10(1):82.

    Article  Google Scholar 

  31. Farashi-Bonab S, Khansari N. Anticancer dendritic cell vaccines producing effective antitumor T Cell responses. Int J Vaccines Vaccin. 2017;4(3):00081.

    Google Scholar 

  32. Waldmann TA. Cytokines in cancer immunotherapy. Cold Spring Harb Perspect Biol. 2017;pii:a028472. https://doi.org/10.1101/cshperspect.a028472.

    Article  Google Scholar 

  33. Ashrafi S, Shapouri R, Mahdavi M. Immunological consequences of immunization with tumor lysate vaccine and propranolol as an adjuvant: a study on cytokine profiles in breast tumor microenvironment. Immunol Lett. 2017;181:63–70.

    Article  CAS  Google Scholar 

  34. Rainone V, Martelli C, Ottobrini L, et al. Immunological characterization of whole tumor lysate-loaded dendritic cells for cancer immunotherapy. PLoS ONE. 2016;11(1):e0146622. https://doi.org/10.1371/journal.pone.0146622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mendoza L, Bubeník J, Símová J, Jandlová T, Vonka V, Mikysková R. Prophylactic, therapeutic and anti-metastatic effects of BMDC and DC lines in mice carrying HPV 16-associated tumours. Int J Oncol. 2003;23:243–7.

    CAS  PubMed  Google Scholar 

  36. Samadi-Foroushani M, Vahabpour R, Memarnejadian A, et al. Immune responses regulation following antitumor dendritic cell-based prophylactic, concurrent, and therapeutic vaccination. Med Oncol. 2011;28(Suppl 1):S660–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ola A. El-Feky.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures involving animals were performed in accordance with institutional guidelines and with the approval of the Research Ethics Committee of Faculty of Pharmacy, Tanta University.

Informed consent

No human subjects in this research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Ashmawy, N.E., El-Zamarany, E.A., Khedr, E.G. et al. Immunotherapeutic strategies for treatment of hepatocellular carcinoma with antigen-loaded dendritic cells: in vivo study. Clin Exp Med 18, 535–546 (2018). https://doi.org/10.1007/s10238-018-0521-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-018-0521-6

Keywords

Navigation