Skip to main content

Advertisement

Log in

Sorafenib effect on liver neoplastic changes in rats: more than a kinase inhibitor

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Although sorafenib was approved as antiangiogenic agent in case of hepatocellular carcinoma (HCC), the pathways mediating its antitumorigenic effects were not fully examined in vivo. This study was conducted to elucidate the molecular mechanisms underlying the antineoplastic effect of sorafenib in livers of rats exposed to the hepatocarcinogen diethyl nitrosamine (DENA) regarding oxidative stress, proliferation, and apoptotic pathways. Male albino rats were divided into three groups: normal control, DENA group, and sorafenib group. Sorafenib (10 mg/kg) was given daily to rats orally for 2 weeks, started 6 weeks after DENA (200 mg/kg, single i.p. dose). The histopathological results proved that sorafenib corrected neoplastic changes in the liver as evidenced by a decrease in size of hepatocellular foci. The liver index, glutathione, as well as Bcl-2 were significantly decreased in sorafenib group compared with DENA group. Sorafenib also exhibited antiproliferative effect through suppression of gene expression of cyclin D1 and β-catenin. Thus, the apoptotic and proliferative pathways in HCC could be interrupted by sorafenib, supporting the role of sorafenib as antineoplastic agent and nominating it as a candidate drug for other neoplasms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kiprianova I, Remy J, Milosch N, et al. Sorafenib sensitizes glioma cells to the BH3 mimetic ABT-737 by targeting MCL1 in a STAT3-dependent manner. Neoplasia. 2015;17(7):564–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wilhelm SM, Adnane L, Newell P, Villanueva A, Llovet JM, Lynch M. Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther. 2008;7(10):3129–40.

    Article  CAS  PubMed  Google Scholar 

  3. Rodríguez-Hernández A, Navarro-Villarán E, González R, et al. Regulation of cell death receptor S-nitrosylation and apoptotic signaling by Sorafenib in hepatoblastoma cells. Redox Biol. 2015;6:174–82.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Koul HK, Pal M, Koul S. Role of P38 MAP kinase signal transduction in solid tumors. Genes Cancer. 2013;4(9–10):342–59.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mittal S, El-Serag HB. Epidemiology of HCC: consider the population. J Clin Gastroenterol. 2013;47:2–6.

    Article  Google Scholar 

  6. Chrisoulidou A, Mandanas S, Margaritidou E, et al. Treatment compliance and severe adverse events limit the use of tyrosine kinase inhibitors in refractory thyroid cancer. Onco Targets Ther. 2015;8:2435–42.

    PubMed  PubMed Central  Google Scholar 

  7. Hung MH, Tai WT, Shiau CW, Chen KF. Downregulation of signal transducer and activator of transcription 3 by sorafenib: a novel mechanism for hepatocellular carcinoma therapy. World J Gastroenterol. 2014;20(41):15269–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. He W, Shi F, Zhou ZW, et al. A bioinformatic and mechanistic study elicits the antifibrotic effect of ursolic acid through the attenuation of oxidative stress with the involvement of ERK, PI3 K/Akt, and p38 MAPK signaling pathways in human hepatic stellate cells and rat liver. Drug Des Devel Ther. 2015;9:3989–4104.

    PubMed  PubMed Central  Google Scholar 

  9. Gupta C, Tripathi DN, Vikram A, Ramarao P, Jena GB. Quercetin inhibits diethylnitrosamine-induced hepatic preneoplastic lesions in rats. Nutr Cancer. 2011;63(2):234–41.

    Article  CAS  PubMed  Google Scholar 

  10. Kita Y, Masaki T, Funakoshi F, et al. Expression of G1 phase-related cell cycle molecules in naturally developing hepatocellular carcinoma of Long-Evans Cinnamon rats. Int J Oncol. 2014;24:1205–11.

    Google Scholar 

  11. Rashid N, Koh HA, Baca HC, et al. Clinical impact of chemotherapy-related adverse events in patients with metastatic breast cancer in an integrated health care system. J Manag Care Spec Pharm. 2015;21(10):863–71.

    Article  PubMed  Google Scholar 

  12. Xue S, Yu T, Zhang Y, Shan L. Clinical observation of translating to small cell lung cancer following treatment with EGFR-tyrosine kinase inhibitors in lung adenocarcinoma. Zhongguo Fei Ai Za Zhi. 2015;18(10):656–60.

    PubMed  Google Scholar 

  13. Shao YY, Hsu CH, Cheng AL. Predictive biomarkers of sorafenib efficacy in advanced hepatocellular carcinoma: Are we getting there? World J Gastroenterol. 2015;21(36):10336–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jayaprakash R, Ramesh V, Sridhar MP, Sasikala C. Antioxidant activity of ethanolic extract of Tinospora cordifolia on N-nitrosodiethylamine (diethylnitrosamine) induced liver cancer in male Wister albino rats. J Pharm Bioallied Sci. 2015;7(Suppl 1):S40–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen X, Shevtsov SP, Hsich E, et al. The β-catenin/T-cell factor/lymphocyte enhancer factor signaling pathway is required for normal and stress-induced cardiac hypertrophy. Mol Cell Biol. 2006;26(12):4462–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rota LM, Wood TL. Crosstalk of the insulin-like growth factor receptor with the Wnt signaling pathway in breast cancer. Front Endocrinol (Lausanne). 2015;6:92.

    Google Scholar 

  17. Bhatia D, Thoppil RJ, Mandal A, et al. Pomegranate bioactive constituents suppress cell proliferation and induce apoptosis in an experimental model of hepatocellular carcinoma: role of Wnt/β-Catenin signaling pathway. Evid Based Complement Alternat Med. 2013;. doi:10.1155/2013/371813.

    Google Scholar 

  18. Wei BR, Edwards JB, Hoover SB, et al. Altered {beta}-catenin accumulation in hepatocellular carcinomas of diethylnitrosamine-exposed rhesus macaques. Toxicol Pathol. 2008;36(7):972–80.

    Article  CAS  PubMed  Google Scholar 

  19. Benoit YD, Guezguez B, Boyd AL, Bhatia M. Molecular pathways: epigenetic modulation of Wnt-glycogen synthase kinase-3 signaling to target human cancer stem cells. Clin Cancer Res. 2014;20(21):5372–8.

    Article  CAS  PubMed  Google Scholar 

  20. Ma L, Wang X, Jia T, Wei W, Chua MS, So S. Tankyrase inhibitors attenuate WNT/β-catenin signaling and inhibit growth of hepatocellular carcinoma cells. Oncotarget. 2015;6(28):25390–401.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Li C, Ge Y, Peng A, Gong R. The redox sensitive glycogen synthase kinase 3β suppresses the self-protective antioxidant response in podocytes upon oxidative glomerular injury. Oncotarget. 2015;6(37):39493–506.

    PubMed  PubMed Central  Google Scholar 

  22. Saba N, Wiestner A. Do mantle cell lymphomas have an ‘Achilles heel’? Curr Opin Hematol. 2015;21(4):350–7.

    Article  Google Scholar 

  23. Jing H, Lee S. NF-κB in cellular senescence and cancer treatment. Mol Cells. 2014;37(3):189–95.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Leslie K, Lang C, Devgan G, et al. Cyclin D1 is transcriptionally regulated by and required for transformation by activated signal transducer and activator of transcription 3. Cancer Res. 2006;66(5):2544–52.

    Article  CAS  PubMed  Google Scholar 

  25. Yang F, Van Meter TE, Buettner R, et al. Sorafenib inhibits STAT3 signaling associated with growth arrest and apoptosis of medulloblastomas. Mol Cancer Ther. 2008;7(11):3519–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gotoh J, Obata M, Yoshie M, Kasai S, Ogawa K. Cyclin D1 over-expression correlates with β-catenin activation, but not with H-ras mutations, and phosphorylation of Akt, GSK3β and ERK1/2 in mouse hepatic carcinogenesis. Carcinogenesis. 2003;24(3):435–42.

    Article  CAS  PubMed  Google Scholar 

  27. Wang W, Du Z, Yan J, et al. Mesenchymal stem cells promote liver regeneration and prolong survival in small-for-size liver grafts: involvement of C-Jun N-terminal kinase, cyclin D1, and NF-κB. Plos One. 2014;9(12):e112532.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Atilgan D, Parlaktas B, Uluocak N, et al. Pomegranate (Punica granatum) juice reduces oxidative injury and improves sperm concentration in a rat model of testicular torsion-detorsion. Exp Ther Med. 2014;8(2):478–82.

    PubMed  PubMed Central  Google Scholar 

  29. Ajiboye TO, Komolafe YO, Oloyede Bukoye, et al. Diethylnitrosamine-induced redox imbalance in rat microsomes: protective role of polyphenolic-rich extract from Sorghum bicolor grains. J Basic Clin Physiol Pharmacol. 2013;24(1):41–9.

    Article  CAS  PubMed  Google Scholar 

  30. Gayathri R, Priya DK, Gunassekaran GR, Sakthisekaran D. Ursolic acid attenuates oxidative stress-mediated hepatocellular carcinoma induction by diethylnitrosamine in male Wistar rats. Asian Pac J Cancer Prev. 2009;10(5):933–8.

    PubMed  Google Scholar 

  31. Coriat R, Nicco C, Chéreau C, et al. Sorafenib-induced hepatocellular carcinoma cell death depends on reactive oxygen species production in vitro and in vivo. Mol Cancer Ther. 2012;11(10):2284–93.

    Article  CAS  PubMed  Google Scholar 

  32. Choi Y, Park GB, Kim JY, et al. Sorafenib induces apoptosis through reactive oxygen species production, JNK/p38 MAPK activation, and suppression of Akt/NF-kB signaling in EBV-transformed B cells (P2088). J Immunol Res. 2013;190(132):34.

    Google Scholar 

  33. Hassan M, Selimovic D, Hannig M, Haikel Y, Brodell RT, Megahed M. Endoplasmic reticulum stress-mediated pathways to both apoptosis and autophagy: significance for melanoma treatment. World J Exp Med. 2015;5(4):206–17.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Majumder S, Roy S, Kaffenberger T, et al. Loss of metallothionein predisposes mice to diethylnitrosamine induced hepatocarcinogenesis by activating NF-kB target genes. Cancer Res. 2011;70(24):10265–76.

    Article  Google Scholar 

  35. Tai WT, Shiau CW, Chen HL, et al. Mcl-1-dependent activation of Beclin 1 mediates autophagic cell death induced by sorafenib and SC-59 in hepatocellular carcinoma cells. Cell Death Dis. 2013;4:e485. doi:10.1038/cddis.2013.18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu YF, Zha BS, Zhang HL, et al. Characteristic gene expression profiles in the progression from liver cirrhosis to carcinoma induced by diethylnitrosamine in a rat model. J Exp Clin Cancer Res. 2010;28:107–23.

    Article  Google Scholar 

Download references

Acknowledgments

Authors gratefully acknowledge Dr. Mona A. Yehia, Professor of Histochemistry and Cell Biology, Medical Research Institute, Alexandria, for conducting and interpreting the histopathological examination.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eslam E. Abd El-Fattah.

Ethics declarations

Conflict of interest

This manuscript was made only for research studies associated with master thesis discussion for the corresponding author. Eslam E. Abd El-Fattah declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Ashmawy, N.E., Khedr, E.G., El-Bahrawy, H.A. et al. Sorafenib effect on liver neoplastic changes in rats: more than a kinase inhibitor. Clin Exp Med 17, 185–191 (2017). https://doi.org/10.1007/s10238-016-0416-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-016-0416-3

Keywords

Navigation