Skip to main content
Log in

Further \(\exists {\mathbb {R}}\)-Complete Problems with PSD Matrix Factorizations

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

Let A be an \(m\times n\) matrix with nonnegative real entries. The psd rank of A is the smallest k for which there exist two families \((P_1,\ldots ,P_m)\) and \((Q_1,\ldots ,Q_n)\) of positive semidefinite Hermitian \(k\times k\) matrices such that \(A(i|j)={\text {tr}}(P_i Q_j)\) for all i, j. Several questions on the algorithmic complexity of related matrix invariants were posed in recent literature: (i) by Stark (for the psd rank as defined above), (ii) by Goucha, Gouveia (for phaseless rank, which appears if the matrices \(P_i\) and \(Q_j\) are required to be of rank one in the above definition), (iii) by Gribling, de Laat, Laurent (for cpsd rank, which corresponds to the situation when A is symmetric and \(P_i=Q_i\) for all i). We solve these questions by proving that the decision versions of the corresponding invariants are \(\exists {\mathbb {R}}\)-complete. In addition, we give a polynomial time recognition algorithm for matrices of bounded cpsd rank.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Abbasi, A. Klingler, T. Netzer, Approximate Completely Positive Semidefinite Rank, preprint (2020) arXiv: 2012.06471.

  2. M. Abrahamsen, A. Adamaszek, T. Miltzow, The Art Gallery Problem is \(\exists \mathbb{R}\)-complete, in ACM S. Theory Comput. ACM, 2018. 65–73.

  3. S. Arora, R. Ge, R. Kannan, A. Moitra, Computing a nonnegative matrix factorization — provably, in ACM S. Theory Comput. ACM, 2012. 145–162.

  4. G. Averkov, V. Kaibel, S. Weltge, Maximum semidefinite and linear extension complexity of families of polytopes, Math. Program. 167 (2018) 381–394.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Basu, R. Pollack, M. Roy, On the combinatorial and algebraic complexity of quantifier elimination, J. ACM 43 (1996) 1002–1045.

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Bienstock. Some provably hard crossing number problems, Discrete Comput. Geom. 6 (1991) 443–459.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Briët, D. Dadush, S. Pokutta, On the existence of 0/1 polytopes with high semidefinite extension complexity, Math. Program. 153 (2015) 179–199.

  8. J. Canny, Some algebraic and geometric computations in PSPACE, in ACM S. Theory Comput. ACM, 1988. 460–469.

  9. J. E. Cohen, U. G. Rothblum, Nonnegative ranks, decompositions, and factorizations of nonnegative matrices, Linear Algebra Appl. 190 (1993) 149–168.

    Article  MathSciNet  MATH  Google Scholar 

  10. R. S. Datta, Universality of Nash equilibria, Math. Oper. Res. 28 (2003) 424–432.

    Article  MathSciNet  MATH  Google Scholar 

  11. K. Dykema, V. I. Paulsen, J. Prakash, Non-closure of the set of quantum correlations via graphs, Commun. Math. Phys. 365 (2019) 1125–1142.

    Article  MathSciNet  MATH  Google Scholar 

  12. K. Elbassioni, T. T. Nguyen, A polynomial-time algorithm for computing low CP-rank decompositions, Inform. Process. Lett. 118 (2017) 10–14.

    Article  MathSciNet  MATH  Google Scholar 

  13. H. Fawzi, J. Gouveia, P. A. Parrilo, R. Z. Robinson, R. R. Thomas, Positive semidefinite rank, Math. Program. 153 (2015) 133–177.

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Fiorini, S. Massar, S. Pokutta, H. R. Tiwary, R. De Wolf, Linear versus semidefinite extended formulations: exponential separation and strong lower bounds. In Proc. Ann. ACM Symp. Theor. Comput., ACM, 2012. 95–106.

    MATH  Google Scholar 

  15. S. Fiorini, T. Rothvoß, H. R. Tiwary, Extended formulations for polygons, Discrete Comput. Geom. 48 (2012) 658–668.

    Article  MathSciNet  MATH  Google Scholar 

  16. P. E. Frenkel, M. Weiner, On vector configurations that can be realized in the cone of positive matrices, Linear Algebra Appl. 459 (2014) 465–474.

    Article  MathSciNet  MATH  Google Scholar 

  17. H. Fu, C. A. Miller, W. Slofstra, The membership problem for constant-sized quantum correlations is undecidable, preprint (2021) 2101.11087.

  18. A. P. Goucha, J. Gouveia, The phaseless rank of a matrix, SIAM J. Appl. Algebra Geometry 5 (2021) 526–551.

    Article  MathSciNet  MATH  Google Scholar 

  19. A. P. Goucha, J. Gouveia, P. M. Silva, On ranks of regular polygons, SIAM J. Discrete Math. 31 (2017) 2612–2625.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Gouveia, R. Grappe, V. Kaibel, K. Pashkovich, R. Z. Robinson, R. R. Thomas, Which nonnegative matrices are slack matrices? Linear Algebra Appl. 439 (2013), 2921-2933.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Gouveia, R. Z. Robinson, R. R. Thomas, Polytopes of minimum positive semidefinite rank, Discrete Comput. Geom. 50 (2013) 679–699.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Gouveia, R. Z. Robinson, R. R. Thomas, Worst-case results for positive semidefinite rank, Math. Program. 153 (2015) 201–212.

    Article  MathSciNet  MATH  Google Scholar 

  23. S. J. Gribling, Applications of optimization to factorization ranks and quantum information theory. Ph. D. dissertation, Tilburg University, 2019.

  24. S. Gribling, D. de Laat, M. Laurent, Matrices with high completely positive semidefinite rank, Linear Algebra Appl. 513 (2017) 122–148.

    Article  MathSciNet  MATH  Google Scholar 

  25. S. Gribling, D. de Laat, M. Laurent, Lower bounds on matrix factorization ranks via noncommutative polynomial optimization, Found. Comput. Math. 19 (2019) 1013–1070.

    Article  MathSciNet  MATH  Google Scholar 

  26. Z. Ji, A. Natarajan, T. Vidick, J. Wright, H. Yuen, MIP\(^*\)= RE , Commun. ACM 64 (2021) 131–138.

    Article  Google Scholar 

  27. P. Koiran, Hilbert’s Nullstellensatz is in the polynomial hierarchy, J. Complexity 12 (1996) 273–286.

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Kwan, L. Sauermann, Y. Zhao, Extension complexity of low-dimensional polytopes, preprint (2020) 2006.08836.

  29. M. Laurent, T. Piovesan, Conic approach to quantum graph parameters using linear optimization over the completely positive semidefinite cone, SIAM J. Optimiz. 25 (2015) 2461–2493.

    Article  MathSciNet  MATH  Google Scholar 

  30. D. D. Lee, H. S. Seung, Learning the parts of objects by non-negative matrix factorization, Nature 401 (1999) 788–791.

    Article  MATH  Google Scholar 

  31. J. R. Lee, P. Raghavendra, D. Steurer, Lower bounds on the size of semidefinite programming relaxations, in ACM S. Theory Comput. ACM, 2015. 567–576.

  32. T. Lee, Z. Wei, R. de Wolf, Some upper and lower bounds on PSD-rank, Math. Program. 162 (2017) 495–521.

    Article  MathSciNet  MATH  Google Scholar 

  33. J. Matoušek, Intersection graphs of segments and \(\exists \mathbb{R}\)preprint (2014) arXiv: 1406.2636

  34. N. E. Mnëv, The universality theorems on the classification problem of configuration varieties and convex polytopes varieties, in Topology and geometry — Rohlin seminar. Springer, Berlin–Heidelberg, 1988. 527–543.

    Google Scholar 

  35. M. Nisse, F. Sottile, Describing amoebas, preprint (2018) 1805.00273.

  36. A. Prakash, J. Sikora, A. Varvitsiotis, Z. Wei, Completely positive semidefinite rank, Math. Program. 171 (2018) 397–431.

    Article  MathSciNet  MATH  Google Scholar 

  37. A. Prakash, A. Varvitsiotis, Correlation matrices, Clifford algebras, and completely positive semidefinite rank, Linear Multilinear A. 68 (2020) 1039–1056.

    Article  MATH  Google Scholar 

  38. J. Renegar (1992) On the computational complexity and geometry of the first-order theory of the reals. Part I: Introduction. Preliminaries. The geometry of semi-algebraic sets. The decision problem for the existential theory of the reals, J. Symb. Comput. 13: 255–299.

    Article  MathSciNet  MATH  Google Scholar 

  39. J. Richter-Gebert, G. M. Ziegler, Realization spaces of 4-polytopes are universal, B. Am. Math. Soc. 32 (1995) 403–412.

    Article  MathSciNet  MATH  Google Scholar 

  40. D. E. Roberson, Conic formulations of graph homomorphisms, J. Algebraic Combin. 43 (2016) 877–913.

    Article  MathSciNet  MATH  Google Scholar 

  41. D. Rosset, R. Ferretti-Schöbitz, J. D. Bancal, N. Gisin, Y. C. Liang, Imperfect measurement settings: Implications for quantum state tomography and entanglement witnesses, Phys. Rev. A 86 (2012), 062325.

    Article  Google Scholar 

  42. M. Schaefer, Realizability of graphs and linkages, in Thirty Essays on Geometric Graph Theory. Springer, New York, 2013. 461–482.

    Book  MATH  Google Scholar 

  43. M. Schaefer, D. Štefankovič, Fixed points, Nash equilibria, and the existential theory of the reals, Theor. Comput. Syst. 60 (2017) 172–193.

    Article  MathSciNet  MATH  Google Scholar 

  44. Y. Shitov, The complexity of positive semidefinite matrix factorization, SIAM J. Optimiz. 27 (2017) 1898–1909.

    Article  MathSciNet  MATH  Google Scholar 

  45. Y. Shitov, The nonnegative rank of a matrix: Hard problems, easy solutions, SIAM Rev 59 (2017) 794–800.

    Article  MathSciNet  MATH  Google Scholar 

  46. Y. Shitov, Matrices of bounded psd rank are easy to detect, SIAM J. Optimiz. 28 (2018) 2067–2072.

    Article  MathSciNet  MATH  Google Scholar 

  47. Y. Shitov, Sublinear extensions of polygons, preprint (2020) 1412.0728v2.

  48. Y. Shitov, Nonnegative rank depends on the field, Math. Program. 186 (2021) 479–486.

    Article  MathSciNet  MATH  Google Scholar 

  49. Y. Shitov, A universality theorem for nonnegative matrix factorizations, preprint (2021) viXra:2101.0167. Older versions are available at 1606.09068.

  50. Y. Shitov, How hard is the tensor rank? Preprint (2021) viXra:2107.0049. An older version is available at 1611.01559.

  51. J. Sikora, A. Varvitsiotis, Linear conic formulations for two-party correlations and values of nonlocal games, Math. Program. 162 (2017) 431–463.

    Article  MathSciNet  MATH  Google Scholar 

  52. W. Slofstra, The set of quantum correlations is not closed, Forum of Mathematics, Pi 7 (2019) e1.

    Article  MathSciNet  MATH  Google Scholar 

  53. C. J. Stark, Self-consistent tomography of the state-measurement Gram matrix, Phys. Rev. A 89 (2014) 052109.

    Article  Google Scholar 

  54. C. J. Stark, A. W. Harrow, Compressibility of positive semidefinite factorizations and quantum models, IEEE T. Inform. Theory 62 (2016) 2867–2880.

    Article  MathSciNet  MATH  Google Scholar 

  55. C. J. Stark, Learning optimal quantum models is NP-hard, Phys. Rev. A 97 (2018) 020103.

    Article  Google Scholar 

  56. A. Vandaele, F. Glineur, N. Gillis, Algorithms for positive semidefinite factorization, Comput. Optim. Appl. 71 (2018) 193–219.

    Article  MathSciNet  MATH  Google Scholar 

  57. S. Vavasis, On the complexity of nonnegative matrix factorization, SIAM J. Optimiz. 20 (2009) 1364–1377.

    Article  MathSciNet  MATH  Google Scholar 

  58. S. Wehner, M. Christandl, A. C. Doherty, Lower bound on the dimension of a quantum system given measured data, Phys. Rev. A 78 (2008) 062112.

    Article  Google Scholar 

Download references

Acknowledgements

I thank all people involved in the editorial process for handling the paper and informative reports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaroslav Shitov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shitov, Y. Further \(\exists {\mathbb {R}}\)-Complete Problems with PSD Matrix Factorizations. Found Comput Math (2023). https://doi.org/10.1007/s10208-023-09610-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10208-023-09610-1

Keywords

Mathematics Subject Classification

Navigation