Skip to main content
Log in

Algorithms for positive semidefinite factorization

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

This paper considers the problem of positive semidefinite factorization (PSD factorization), a generalization of exact nonnegative matrix factorization. Given an m-by-n nonnegative matrix X and an integer k, the PSD factorization problem consists in finding, if possible, symmetric k-by-k positive semidefinite matrices \(\{A^1,\ldots ,A^m\}\) and \(\{B^1,\ldots ,B^n\}\) such that \(X_{i,j}=\text {trace}(A^iB^j)\) for \(i=1,\ldots ,m\), and \(j=1,\ldots ,n\). PSD factorization is NP-hard. In this work, we introduce several local optimization schemes to tackle this problem: a fast projected gradient method and two algorithms based on the coordinate descent framework. The main application of PSD factorization is the computation of semidefinite extensions, that is, the representations of polyhedrons as projections of spectrahedra, for which the matrix to be factorized is the slack matrix of the polyhedron. We compare the performance of our algorithms on this class of problems. In particular, we compute the PSD extensions of size \(k=1+ \lceil \log _2(n) \rceil \) for the regular n-gons when \(n=5\), 8 and 10. We also show how to generalize our algorithms to compute the square root rank (which is the size of the factors in a PSD factorization where all factor matrices \(A^i\) and \(B^j\) have rank one) and completely PSD factorizations (which is the special case where the input matrix is symmetric and equality \(A^i=B^i\) is required for all i).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Example 5.2 provides an explicit PSD factorization of size 4 for \(S_8\). For \(S_7\), we were not able to obtain such an exact factorization of size 4, although we have tried many different initializations. It is possible that \({{\mathrm{{{\mathrm{rank}}}_{{{\mathrm{psd}}}}}}}(S_7) = 5\) since there is no result about the monotonicity of the PSD rank of regular n-gons (this is, as far as we know, an open question). In fact, [12] showed that monotonicity does not hold for the PSD rank over the complex numbers with \({{\mathrm{rank}}}_{{{\mathrm{psd}}}}^{\mathbb {C}}(S_6) = 3 < 4 \le {{\mathrm{rank}}}_{{{\mathrm{psd}}}}^{\mathbb {C}}(S_5)\).

References

  1. Berman, A., Shaked-Monderer, N.: Completely Positive Matrices. World Scientific, Singapore (2003)

    Book  MATH  Google Scholar 

  2. Burer, S., Monteiro, R.: A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization. Math. Program. 95(2), 329–357 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cardano, G.: Ars Magna or the Rules of Algebra. Dover Publications, Mineola (1968)

    MATH  Google Scholar 

  4. Cichocki, A., Phan, A.H.: Fast local algorithms for large scale nonnegative matrix and tensor factorizations. IEICE Trans. Fundam. Electron. E92–A(3), 708–721 (2009)

    Article  Google Scholar 

  5. Cichocki, A., Zdunek, R., Amari, S.i.: Hierarchical ALS algorithms for nonnegative matrix and 3D tensor factorization. In: International Conference on Independent Component Analysis and Signal Separation, pp. 169–176. Springer (2007)

  6. Fawzi, H., Gouveia, J., Parrilo, P., Robinson, R., Thomas, R.: Positive semidefinite rank. Math. Program. 153(1), 133–177 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fawzi, H., Gouveia, J., Robinson, R.: Rational and real positive semidefinite rank can be different. Oper. Res. Lett. 44(1), 59–60 (2016)

    Article  MathSciNet  Google Scholar 

  8. Fiorini, S., Massar, S., Pokutta, S., Tiwary, H., de Wolf, R.: Linear vs. semidefinite extended formulations: exponential separation and strong lower bounds. In: Proceedings of the 44th Annual ACM Symposium on Theory of Computing, pp. 95–106. ACM (2012)

  9. Fiorini, S., Rothvoss, T., Tiwary, H.: Extended formulations for polygons. Discrete Comput. Geom. 48(3), 658–668 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gillis, N.: The why and how of nonnegative matrix factorization. In: Suykens, J., Signoretto, M., Argyriou, A. (eds.) Regularization, Optimization, Kernels, and Support Vector Machines‘. Chapman & Hall/CRC, Boca Raton (2014). Machine Learning and Pattern Recognition Series

    Google Scholar 

  11. Gillis, N., Glineur, F.: Accelerated multiplicative updates and hierarchical ALS algorithms for nonnegative matrix factorization. Neural Comput. 24(4), 1085–1105 (2012)

    Article  MathSciNet  Google Scholar 

  12. Goucha, A., Gouveia, J., Silva, P.: On ranks of regular polygons. SIAM J. Discrete Math. 31(4), 2612–2625 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gouveia, J., Parrilo, P., Thomas, R.: Lifts of convex sets and cone factorizations. Math. Oper. Res. 38(2), 248–264 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gouveia, J., Robinson, R., Thomas, R.: Worst-case results for positive semidefinite rank. Math. Program. 153(1), 201–212 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gribling, S., de Laat, D., Laurent, M.: Matrices with high completely positive semidefinite rank. Linear Algebra Appl. 513, 122–148 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grippo, L., Sciandrone, M.: On the convergence of the block nonlinear gauss-seidel method under convex constraints. Oper. Res. Lett. 26(3), 127–136 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ho, N.D.: Nonnegative matrix factorization algorithms and applications. Ph.D. thesis, Univertsité catholique de Louvain (2008)

  18. Hsieh, C.J., Dhillon, I.: Fast coordinate descent methods with variable selection for non-negative matrix factorization. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1064–1072. ACM (2011)

  19. Kaibel, V.: Extended formulations in combinatorial optimization. Optima 85, 2–7 (2011)

    Google Scholar 

  20. Kuang, D., Yun, S., Park, H.: SymNMF: nonnegative low-rank approximation of a similarity matrix for graph clustering. J. Glob. Optim. 62(3), 545–574 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kubjas, K., Robeva, E., Robinson, R.: Positive semidefinite rank and nested spectrahedra. Linear Multilinear Algebra. 1–23 (2017)

  22. Lee, T., Theis, D.O.: Support-based lower bounds for the positive semidefinite rank of a nonnegative matrix. (2012). arXiv preprint arXiv:1203.3961

  23. Löfberg, J.: Yalmip: A toolbox for modeling and optimization in matlab. In: IEEE International Symposium on Computer Aided Control Systems Design, 2004, pp. 284–289. IEEE (2004)

  24. Nesterov, Y.: A method of solving a convex programming problem with convergence rate 0(1/k2). Sov. Math. Dokl. 27, 372–376 (1983)

    MATH  Google Scholar 

  25. Prakash, A., Sikora, J., Varvitsiotis, A., Wei, Z.: Completely positive semidefinite rank. Math. Program. 1–35 (2016)

  26. Shitov, Y.: The complexity of positive semidefinite matrix factorization. SIAM J. Optim. 27(3), 1898–1909 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sturm, J.F.: Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones. Optim. Methods Softw. 11(1–4), 625–653 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Vandaele, A., Gillis, N., Glineur, F.: On the linear extension complexity of regular n-gons. Linear Algebra Appl. 521, 217–239 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Vandaele, A., Gillis, N., Glineur, F., Tuyttens, D.: Heuristics for exact nonnegative matrix factorization. J. Glob. Optim. 65(2), 369–400 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Vandaele, A., Gillis, N., Lei, Q., Zhong, K., Dhillon, I.: Efficient and non-convex coordinate descent for symmetric nonnegative matrix factorization. IEEE Trans. Signal Process. 64(21), 5571–5584 (2016)

    Article  MathSciNet  Google Scholar 

  31. Wright, S.: Coordinate descent algorithms. Math. Program. 151(1), 3–34 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yannakakis, M.: Expressing combinatorial optimization problems by linear programs. J. Comput. Syst. Sci. 43(3), 441–466 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Vandaele.

Additional information

Nicolas Gillis acknowledges the support by the F.R.S.-FNRS (incentive Grant for scientific research No. F.4501.16) and by the ERC (starting Grant No. 679515). This paper presents research results of the Concerted Research Action (ARC) programme supported by the Federation Wallonia-Brussels (contract ARC 14/19-060).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vandaele, A., Glineur, F. & Gillis, N. Algorithms for positive semidefinite factorization. Comput Optim Appl 71, 193–219 (2018). https://doi.org/10.1007/s10589-018-9998-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-018-9998-x

Keywords

Navigation