Skip to main content
Log in

Histological Correlates of Auditory Nerve Injury from Kainic Acid in the Budgerigar (Melopsittacus undulatus)

  • Original Article: General Research
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

Purpose

Loss of auditory nerve afferent synapses with cochlear hair cells, called cochlear synaptopathy, is a common pathology in humans caused by aging and noise overexposure. The perceptual consequences of synaptopathy in isolation from other cochlear pathologies are still unclear. Animal models provide an effective approach to resolve uncertainty regarding the physiological and perceptual consequences of auditory nerve loss, because neural lesions can be induced and readily quantified. The budgerigar, a parakeet species, has recently emerged as an animal model for synaptopathy studies based on its capacity for vocal learning and ability to behaviorally discriminate simple and complex sounds with acuity similar to humans. Kainic acid infusions in the budgerigar produce a profound reduction of compound auditory nerve responses, including wave I of the auditory brainstem response, without impacting physiological hair cell measures. These results suggest selective auditory nerve damage. However, histological correlates of neural injury from kainic acid are still lacking.

Methods

We quantified the histological effects caused by intracochlear infusion of kainic acid (1 mM; 2.5 µL), and evaluated correlations between the histological and physiological assessments of auditory nerve status.

Results

Kainic acid infusion in budgerigars produced pronounced loss of neural auditory nerve soma (60% on average) in the cochlear ganglion, and of peripheral axons, at time points 2 or more months following injury. The hair cell epithelium was unaffected by kainic acid. Neural loss was significantly correlated with reduction of compound auditory nerve responses and auditory brainstem response wave I.

Conclusion

Compound auditory nerve responses and wave I provide a useful index of cochlear synaptopathy in this animal model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Data in the manuscript are available by request from the corresponding author.

References

  1. Makary CA, Shin J, Kujawa SG, Liberman MC, Merchant SN (2011) Age-related primary cochlear neuronal degeneration in human temporal bones. J Assoc Res Otolaryngol 12(6):711–717. https://doi.org/10.1007/s10162-011-0283-2

    Article  PubMed  PubMed Central  Google Scholar 

  2. Viana LM, O’Malley JT, Burgess BJ, Jones DD, Oliveira CA, Santos F, Merchant SN, Liberman LD, Liberman MC (2015) Cochlear neuropathy in human presbycusis: confocal analysis of hidden hearing loss in post-mortem tissue. Hear Res 327:78–88. https://doi.org/10.1016/j.heares.2015.04.014

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wu PZ, Liberman LD, Bennett K, de Gruttola V, O’Malley JT, Liberman MC (2019) Primary neural degeneration in the human cochlea: evidence for hidden hearing loss in the aging ear. Neuroscience 407:8–20. https://doi.org/10.1016/j.neuroscience.2018.07.053

    Article  CAS  PubMed  Google Scholar 

  4. Liberman MC, Epstein MJ, Cleveland SS, Wang H, Maison SF (2016) Toward a differential diagnosis of hidden hearing loss in humans. PLoS ONE 11(9):e0162726. https://doi.org/10.1371/journal.pone.0162726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Grant KJ, Mepani AM, Wu PZ, Hancock KE, de Gruttola V, Liberman MC, Maison SF (2020) Electrophysiological markers of cochlear function correlate with hearing-in-noise performance among audiometrically normal subjects. J Neurophysiol 124(2):418–431. https://doi.org/10.1152/jn.00016.2020

    Article  PubMed  PubMed Central  Google Scholar 

  6. Grose JH, Buss E, Hall JW 3rd (2017) Loud music exposure and cochlear synaptopathy in young adults: isolated auditory brainstem response effects but no perceptual consequences. Trends Hear 21:2331216517737417. https://doi.org/10.1177/2331216517737417

    Article  PubMed  PubMed Central  Google Scholar 

  7. Prendergast G, Millman RE, Guest H, Munro KJ, Kluk K, Dewey RS, Hall DA, Heinz MG, Plack CJ (2017) Effects of noise exposure on young adults with normal audiograms II: behavioral measures. Hear Res 356:74–86. https://doi.org/10.1016/j.heares.2017.10.007

    Article  PubMed  PubMed Central  Google Scholar 

  8. Guest H, Munro KJ, Prendergast G, Plack CJ (2019) Reliability and interrelations of seven proxy measures of cochlear synaptopathy. Hear Res 375:34–43. https://doi.org/10.1016/j.heares.2019.01.018

    Article  PubMed  PubMed Central  Google Scholar 

  9. Henry KS (2022) Animal models of hidden hearing loss: does auditory-nerve-fiber loss cause real-world listening difficulties? Mol Cell Neurosci 118:103692. https://doi.org/10.1016/j.mcn.2021.103692

    Article  CAS  PubMed  Google Scholar 

  10. Hickox AE, Larsen E, Heinz MG, Shinobu L, Whitton JP (2017) Translational issues in cochlear synaptopathy. Hear Res 349:164–171. https://doi.org/10.1016/j.heares.2016.12.010

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kujawa SG, Liberman MC (2009) Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci 29(45):14077–14085. https://doi.org/10.1523/JNEUROSCI.2845-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lin HW, Furman AC, Kujawa SG, Liberman MC (2011) Primary neural degeneration in the Guinea pig cochlea after reversible noise-induced threshold shift. J Assoc Res Otolaryngol 12(5):605–616. https://doi.org/10.1007/s10162-011-0277-0

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yuan Y, Shi F, Yin Y, Tong M, Lang H, Polley DB, Liberman MC, Edge AS (2014) Ouabain-induced cochlear nerve degeneration: synaptic loss and plasticity in a mouse model of auditory neuropathy. J Assoc Res Otolaryngol 15(1):31–43. https://doi.org/10.1007/s10162-013-0419-7

    Article  PubMed  Google Scholar 

  14. Chambers AR, Resnik J, Yuan Y, Whitton JP, Edge AS, Liberman MC, Polley DB (2016) Central gain restores auditory processing following near-complete cochlear denervation. Neuron 89(4):867–879. https://doi.org/10.1016/j.neuron.2015.12.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Henry KS, Abrams KS (2018) Persistent auditory nerve damage following kainic acid excitotoxicity in the budgerigar (Melopsittacus undulatus). J Assoc Res Otolaryngol 19(4):435–449. https://doi.org/10.1007/s10162-018-0671-y

    Article  PubMed  PubMed Central  Google Scholar 

  16. McLennan H (1983) Receptors for the excitatory amino acids in the mammalian central nervous system. Prog Neurobiol 20(3–4):251–271. https://doi.org/10.1016/0301-0082(83)90004-7

    Article  CAS  PubMed  Google Scholar 

  17. Pujol R, Lenoir M, Robertson D, Eybalin M, Johnstone BM (1985) Kainic acid selectively alters auditory dendrites connected with cochlear inner hair cells. Hear Res 18(2):145–151. https://doi.org/10.1016/0378-5955(85)90006-1

    Article  CAS  PubMed  Google Scholar 

  18. Juiz JM, Rueda J, Merchan JA, Sala ML (1989) The effects of kainic acid on the cochlear ganglion of the rat. Hear Res 40(1–2):65–74. https://doi.org/10.1016/0378-5955(89)90100-7

    Article  CAS  PubMed  Google Scholar 

  19. Shero M, Salvi RJ, Chen L, Hashino E (1998) Excitotoxic effect of kainic acid on chicken cochlear afferent neurons. Neurosci Lett 257(2):81–84. https://doi.org/10.1016/s0304-3940(98)00821-0

    Article  CAS  PubMed  Google Scholar 

  20. Sun H, Hashino E, Ding DL, Salvi RJ (2001) Reversible and irreversible damage to cochlear afferent neurons by kainic acid excitotoxicity. J Comp Neurol 430(2):172–181. https://doi.org/10.1002/1096-9861(20010205)430:2%3c172::aid-cne1023%3e3.0.co;2-w

    Article  CAS  PubMed  Google Scholar 

  21. Zheng XY, Wang J, Salvi RJ, Henderson D (1996) Effects of kainic acid on the cochlear potentials and distortion product otoacoustic emissions in chinchilla. Hear Res 95(1–2):161–167. https://doi.org/10.1016/0378-5955(96)00047-0

    Article  CAS  PubMed  Google Scholar 

  22. Ding D, Qi W, Jiang H, Salvi R (2021) Excitotoxic damage to auditory nerve afferents and spiral ganglion neurons is correlated with developmental upregulation of AMPA and KA receptors. Hear Res 411:108358. https://doi.org/10.1016/j.heares.2021.108358

    Article  PubMed  Google Scholar 

  23. Walia A, Lee C, Hartsock J, Goodman SS, Dolle R, Salt AN, Lichtenhan JT, Rutherford MA (2021) Reducing auditory nerve excitability by acute antagonism of Ca(2+)-permeable AMPA receptors. Front Synaptic Neurosci 13:680621. https://doi.org/10.3389/fnsyn.2021.680621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Okanoya K, Dooling RJ (1987) Hearing in passerine and psittacine birds: a comparative study of absolute and masked auditory thresholds. J Comp Psychol 101(1):7–15. https://doi.org/10.1037/0735-7036.101.1.7

    Article  CAS  PubMed  Google Scholar 

  25. Henry KS, Amburgey KN, Abrams KS, Carney LH (2020) Identifying cues for tone-in-noise detection using decision variable correlation in the budgerigar (Melopsittacus undulatus). J Acoust Soc Am 147(2):984. https://doi.org/10.1121/10.0000621

    Article  PubMed  PubMed Central  Google Scholar 

  26. Dent ML, Dooling RJ, Pierce AS (2000) Frequency discrimination in budgerigars (Melopsittacus undulatus): effects of tone duration and tonal context. J Acoust Soc Am 107(5 Pt 1):2657–2664. https://doi.org/10.1121/1.428651

    Article  CAS  PubMed  Google Scholar 

  27. Dooling RJ, Searcy MH (1981) Amplitude-nodulation thresholds for the parakeet (Melopsittacus-undulatus). J Comp Physiol 143(3):383–388. https://doi.org/10.1007/Bf00611177

    Article  Google Scholar 

  28. Carney LH, Ketterer AD, Abrams KS, Schwarz DM, Idrobo F (2013) Detection thresholds for amplitude modulations of tones in budgerigar, rabbit, and human. Adv Exp Med Biol 787:391–398. https://doi.org/10.1007/978-1-4614-1590-9_43

    Article  PubMed  PubMed Central  Google Scholar 

  29. Henry KS, Neilans EG, Abrams KS, Idrobo F, Carney LH (2016) Neural correlates of behavioral amplitude modulation sensitivity in the budgerigar midbrain. J Neurophysiol 115(4):1905–1916. https://doi.org/10.1152/jn.01003.2015

    Article  PubMed  PubMed Central  Google Scholar 

  30. Henry KS, Amburgey KN, Abrams KS, Idrobo F, Carney LH (2017) Formant-frequency discrimination of synthesized vowels in budgerigars (Melopsittacus undulatus) and humans. J Acoust Soc Am 142(4):2073. https://doi.org/10.1121/1.5006912

    Article  PubMed  PubMed Central  Google Scholar 

  31. Henry KS, Abrams KS, Forst J, Mender MJ, Neilans EG, Idrobo F, Carney LH (2017) Midbrain synchrony to envelope structure supports behavioral sensitivity to single-formant vowel-like sounds in noise. J Assoc Res Otolaryngol 18(1):165–181. https://doi.org/10.1007/s10162-016-0594-4

    Article  PubMed  Google Scholar 

  32. Wong SJ, Abrams KS, Amburgey KN, Wang Y, Henry KS (2019) Effects of selective auditory-nerve damage on the behavioral audiogram and temporal integration in the budgerigar. Hear Res 374:24–34. https://doi.org/10.1016/j.heares.2019.01.019

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wilson JL, Abrams KS, Henry KS (2021) Effects of kainic acid-induced auditory nerve damage on envelope-following responses in the budgerigar (Melopsittacus undulatus). J Assoc Res Otolaryngol 22(1):33–49. https://doi.org/10.1007/s10162-020-00776-x

    Article  PubMed  Google Scholar 

  34. Henry KS, Abrams KS (2021) Normal tone-in-noise sensitivity in trained budgerigars despite substantial auditory-nerve injury: no evidence of hidden hearing loss. J Neurosci 41(1):118–129. https://doi.org/10.1523/JNEUROSCI.2104-20.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gleich O, Fischer FP, Köppl C, Manley GA (2004) Hearing organ evolution and specialization: archosaurs. In: Fay RR, Popper AN (eds) Evolution of the Vertebrate Auditory System. Springer, New York, pp 224–255

    Chapter  Google Scholar 

  36. Bates D, Machler M, Bolker BM, Walker SC (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48. https://doi.org/10.18637/jss.v067.i01

    Article  Google Scholar 

  37. Manley GA, Clack JA (2004) An outline of the evolution of vertebrate hearing organs. In: Fay RR, Popper AN (eds) Evolution of the Vertebrate Auditory System. Springer, New York, pp 1–26

    Chapter  Google Scholar 

  38. Koppl C (2011) Birds–same thing, but different? Convergent evolution in the avian and mammalian auditory systems provides informative comparative models. Hear Res 273(1–2):65–71. https://doi.org/10.1016/j.heares.2010.03.095

    Article  PubMed  Google Scholar 

  39. Salvi RJ, Saunders SS, Powers NL, Boettcher FA (1992) Discharge patterns of cochlear ganglion neurons in the chicken. J Comp Physiol A 170(2):227–241. https://doi.org/10.1007/BF00196905

    Article  CAS  PubMed  Google Scholar 

  40. Manley GA, Gleich O, Leppelsack HJ, Oeckinghaus H (1985) Activity patterns of cochlear ganglion neurones in the starling. J Comp Physiol A 157(2):161–181. https://doi.org/10.1007/BF01350025

    Article  CAS  PubMed  Google Scholar 

  41. Gleich O (1989) Auditory primary afferents in the starling: correlation of function and morphology. Hear Res 37(3):255–267. https://doi.org/10.1016/0378-5955(89)90026-9

    Article  CAS  PubMed  Google Scholar 

  42. Manley GA, Schwabedissen G, Gleich O (1993) Morphology of the basilar papilla of the budgerigar. Melopsittacus undulatus J Morphol 218(2):153–165. https://doi.org/10.1002/jmor.1052180205

    Article  PubMed  Google Scholar 

  43. Ryals BM, Westbrook EW (1988) Ganglion cell and hair cell loss in Coturnix quail associated with aging. Hear Res 36(1):1–8. https://doi.org/10.1016/0378-5955(88)90133-5

    Article  CAS  PubMed  Google Scholar 

  44. Manley GA, Brix J, Kaiser A (1987) Developmental stability of the tonotopic organization of the chick’s basilar papilla. Science 237(4815):655–656. https://doi.org/10.1126/science.3603046

    Article  CAS  PubMed  Google Scholar 

  45. Chen L, Salvi R, Shero M (1994) Cochlear frequency-place map in adult chickens: intracellular biocytin labeling. Hear Res 81(1–2):130–136. https://doi.org/10.1016/0378-5955(94)90160-0

    Article  CAS  PubMed  Google Scholar 

  46. Köppl C (1997) Frequency tuning and spontaneous activity in the auditory nerve and cochlear nucleus magnocellularis of the barn owl Tyto alba. J Neurophysiol 77(1):364–377. https://doi.org/10.1152/jn.1997.77.1.364

    Article  PubMed  Google Scholar 

  47. Weiss S (1990) Pharmacological properties of the N-methyl-D-aspartate receptor system coupled to the evoked release of gamma-[3H] aminobutyric acid from striatal neurons in primary culture. J Pharmacol Exp Ther 252(1):380–386

    CAS  PubMed  Google Scholar 

  48. Azarias G, Kruusmagi M, Connor S, Akkuratov EE, Liu XL, Lyons D, Brismar H, Broberger C, Aperia A (2013) A specific and essential role for Na, K-ATPase alpha3 in neurons co-expressing alpha1 and alpha3. J Biol Chem 288(4):2734–2743. https://doi.org/10.1074/jbc.M112.425785

    Article  CAS  PubMed  Google Scholar 

  49. Schmiedt RA, Okamura HO, Lang H, Schulte BA (2002) Ouabain application to the round window of the gerbil cochlea: a model of auditory neuropathy and apoptosis. J Assoc Res Otolaryngol 3(3):223–233. https://doi.org/10.1007/s1016200220017

    Article  CAS  PubMed  Google Scholar 

  50. Robertson D (1983) Functional significance of dendritic swelling after loud sounds in the guinea pig cochlea. Hear Res 9(3):263–278. https://doi.org/10.1016/0378-5955(83)90031-x

    Article  CAS  PubMed  Google Scholar 

  51. Keithley EM, Feldman ML (1979) Spiral ganglion cell counts in an age-graded series of rat cochleas. J Comp Neurol 188(3):429–442. https://doi.org/10.1002/cne.901880306

    Article  CAS  PubMed  Google Scholar 

  52. Wang Q, Green SH (2011) Functional role of neurotrophin-3 in synapse regeneration by spiral ganglion neurons on inner hair cells after excitotoxic trauma in vitro. J Neurosci 31(21):7938–7949. https://doi.org/10.1523/JNEUROSCI.1434-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Versnel H, Prijs VF, Schoonhoven R (1990) Single-fibre responses to clicks in relationship to the compound action potential in the guinea pig. Hear Res 46(1–2):147–160. https://doi.org/10.1016/0378-5955(90)90145-f

    Article  CAS  PubMed  Google Scholar 

  54. Buchwald JS, Huang C (1975) Far-field acoustic response: origins in the cat. Science 189(4200):382–384. https://doi.org/10.1126/science.1145206

    Article  CAS  PubMed  Google Scholar 

  55. Bourien J, Tang Y, Batrel C, Huet A, Lenoir M, Ladrech S, Desmadryl G, Nouvian R, Puel JL, Wang J (2014) Contribution of auditory nerve fibers to compound action potential of the auditory nerve. J Neurophysiol 112(5):1025–1039. https://doi.org/10.1152/jn.00738.2013

    Article  CAS  PubMed  Google Scholar 

  56. Lee C, Guinan JJ Jr, Rutherford MA, Kaf WA, Kennedy KM, Buchman CA, Salt AN, Lichtenhan JT (2019) Cochlear compound action potentials from high-level tone bursts originate from wide cochlear regions that are offset toward the most sensitive cochlear region. J Neurophysiol 121(3):1018–1033. https://doi.org/10.1152/jn.00677.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Brittan-Powell EF, Dooling RJ, Gleich O (2002) Auditory brainstem responses in adult budgerigars (Melopsittacus undulatus). J Acoust Soc Am 112(3 Pt 1):999–1008. https://doi.org/10.1121/1.1494807

    Article  PubMed  Google Scholar 

  58. Caus Capdevila M, Sienknecht U, Köppl C (2021) Developmental maturation of presynaptic ribbon numbers in chicken basilar-papilla hair cells and its perturbation by long-term overexpression of Wnt9a. Dev Neurobiol 81(6):817–832. https://doi.org/10.1002/dneu.22845

    Article  CAS  PubMed  Google Scholar 

  59. Martinez-Dunst C, Michaels R, Fuchs P (1997) Release sites and calcium channels in hair cells of the chick’s cochlea. J Neurosci 17(23):9133–9144. https://doi.org/10.1523/JNEUROSCI.17-23-09133.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Robert Dirksen provided use of his cryostat for frozen sectioning of cochlear samples.

Funding

This research was supported by grant R01-DC017519.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth S. Henry.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Abrams, K.S., Youngman, M. et al. Histological Correlates of Auditory Nerve Injury from Kainic Acid in the Budgerigar (Melopsittacus undulatus). JARO 24, 473–485 (2023). https://doi.org/10.1007/s10162-023-00910-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-023-00910-5

Keywords

Navigation