Skip to main content

Advertisement

Log in

Effects of Kainic Acid-Induced Auditory Nerve Damage on Envelope-Following Responses in the Budgerigar (Melopsittacus undulatus)

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

Sensorineural hearing loss is a prevalent problem that adversely impacts quality of life by compromising interpersonal communication. While hair cell damage is readily detectable with the clinical audiogram, this traditional diagnostic tool appears inadequate to detect lost afferent connections between inner hair cells and auditory nerve (AN) fibers, known as cochlear synaptopathy. The envelope-following response (EFR) is a scalp-recorded response to amplitude modulation, a critical acoustic feature of speech. Because EFRs can have greater amplitude than wave I of the auditory brainstem response (ABR; i.e., the AN-generated component) in humans, the EFR may provide a more sensitive way to detect cochlear synaptopathy. We explored the effects of kainate- (kainic acid) induced excitotoxic AN injury on EFRs and ABRs in the budgerigar (Melopsittacus undulatus), a parakeet species used in studies of complex sound discrimination. Kainate reduced ABR wave I by 65–75 % across animals while leaving otoacoustic emissions unaffected or mildly enhanced, consistent with substantial and selective AN synaptic loss. Compared to wave I loss, EFRs showed similar or greater percent reduction following kainate for amplitude-modulation frequencies from 380 to 940 Hz and slightly less reduction from 80 to 120 Hz. In contrast, forebrain-generated middle latency responses showed no consistent change post-kainate, potentially due to elevated “central gain” in the time period following AN damage. EFR reduction in all modulation frequency ranges was highly correlated with wave I reduction, though within-animal effect sizes were greater for higher modulation frequencies. These results suggest that even low-frequency EFRs generated primarily by central auditory nuclei might provide a useful noninvasive tool for detecting synaptic injury clinically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48. https://doi.org/10.18637/jss.v067.i01

    Article  Google Scholar 

  • Bharadwaj HM, Masud S, Mehraei G, Verhulst S, Shinn-Cunningham BG (2015) Individual differences reveal correlates of hidden hearing deficits. J Neurosci 35(5):2161–2172

    Article  CAS  Google Scholar 

  • Bharadwaj HM, Verhulst S, Shaheen L, Liberman MC, Shinn-Cunningham BG (2014) Cochlear neuropathy and the coding of supra-threshold sound. Front Syst Neurosci 8:26

    Article  Google Scholar 

  • Bledsoe SC, Bobbin RP, Chihal DM (1981) Kainic acid: an evaluation of its action on cochlear potentials. Hear Res 4:109–120. https://doi.org/10.1016/0378-5955(81)90040-x

    Article  CAS  PubMed  Google Scholar 

  • Bode HW (1945) Network analysis and feedback amplifier design. Van Nostrand, Toronto

    Google Scholar 

  • Bourien J, Tang Y, Batrel C, Huet A, Lenoir M, Ladrech S, Desmadryl G, Nouvian R, Puel JL, Wang J (2014) Contribution of auditory nerve fibers to compound action potential of the auditory nerve. J Neurophysiol 112(5):1025–1039

    Article  CAS  Google Scholar 

  • Bramhall N, Beach EF, Epp B, Le Prell CG et al (2019) The search for noise-induced cochlear synaptopathy in humans: mission impossible? Hear Res 377:88–103

    Article  Google Scholar 

  • Brittan-Powell EF, Dooling RJ, Gleich O (2002) Auditory brainstem responses in adult budgerigars (Melopsittacus undulatus). J Acoust Soc Am 112:999–1008. https://doi.org/10.1121/1.1494807

    Article  PubMed  Google Scholar 

  • Carney LH (2018) Supra-threshold hearing and fluctuation profiles: implications for sensorineural and hidden hearing loss. J Assoc Res Otolaryngol 19:331–352

    Article  Google Scholar 

  • Carney LH, Ketterer AD, Abrams KS, Schwarz DM, Idrobo F (2013) Detection thresholds for amplitude modulations of tones in budgerigar, rabbit, and human. Adv Exp Med Biol 787:391–398. https://doi.org/10.1007/978-1-4614-1590-9_43

    Article  PubMed  PubMed Central  Google Scholar 

  • Caspary DM, Ling L, Turner JG, Hughes LF (2008) Inhibitory neurotransmission, plasticity and aging in the mammalian central auditory system. J Exp Biol 211:1781–1791. https://doi.org/10.1242/jeb.013581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chambers AR, Resnik J, Yuan Y, Whitton JP, Edge AS, Liberman MC, Polley DB (2016) Central gain restores auditory processing following near-complete cochlear denervation. Neuron. 89(4):867–879

    Article  CAS  Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioral sciences. Laurence Erlbaum Associates, USA

    Google Scholar 

  • Conti G, Modica V, Castrataro A, Fileni A, Colosimo C Jr (1988) Latency of the auditory brainstem response (ABR) and head size: evidence of the relationship by means of radiographic data. Scand Audiol Suppl 30:219–223

    CAS  PubMed  Google Scholar 

  • Costalupes JA, Young ED, Gibson DJ (1984) Effects of continuous noise backgrounds on rate response of auditory-nerve fibers in cat. J Neurophysiol 51(6):1326–1344

    Article  CAS  Google Scholar 

  • Dimitrijevic A, Alsamri J, John MS, Purcell D, George S, Zeng F (2016) Human envelope following responses to amplitude modulation: effects of aging and modulation depth. Ear Hear 37(5):e322–e335

    Article  Google Scholar 

  • Dolphin WF, Mountain DC (1992) The envelope following response: scalp potentials elicited in the Mongolian gerbil using sinusoidally AM acoustic signals. Hear Res 58(1):70–78

    Article  CAS  Google Scholar 

  • Dooling RJ, Lohr B, Dent ML (2000) Hearing in birds and reptiles. In: Dooling RJ, Fay RR, Popper AN (eds) Comparative hearing: birds and reptiles. Springer, New York, pp 308–359

    Chapter  Google Scholar 

  • Dooling RJ, Searcy MH (1981) Amplitude modulation thresholds for the parakeet (Melopsittacus undulatus). J Comp Physiol 43:383–388. https://doi.org/10.1007/BF00611177

    Article  Google Scholar 

  • Harris KC, Vaden KI, McClaskey CM, Dias JW, Dubno JR (2018) Complementary metrics of human auditory nerve function derived from compound action potentials. J Neurophysiol 119(3):1019–1028. https://doi.org/10.1152/jn.00638.2017

    Article  PubMed  Google Scholar 

  • Henry KS, Abrams KS (2018) Persistent auditory nerve damage following kainic acid excitotoxicity in the budgerigar (Melopsittacus undulates). J Assoc Res Otolaryngol 19(4):435–449

    Article  Google Scholar 

  • Henry KS, Amburgey KN, Abrams KS, Carney LH (2020) Identifying cues for tone-in-noise detection using decision variable correlation in the budgerigar (Melopsittacus undulatus). J Acoust Soc Am 147:984–997

    Article  Google Scholar 

  • Henry KS, Amburgey KN, Abrams KS, Idrobo F, Carney LH (2017) Formant-frequency discrimination of synthesized vowels in budgerigars (Melopsittacus undulatus) and humans. J Acoust Soc Am 142:2073–2083. https://doi.org/10.1121/1.5006912

    Article  PubMed  PubMed Central  Google Scholar 

  • Henry KS, Lucas JR (2008) Coevolution of auditory sensitivity and temporal resolution with acoustic signal space in three songbirds. Anim Behav 76:1659–1671

    Article  Google Scholar 

  • Henry KS, Neilans EG, Abrams KS, Idrobo F, Carney LH (2016) Neural correlates of behavioral amplitude modulation sensitivity in the budgerigar midbrain. J Neurophysiol 115(4):1905–1916

    Article  Google Scholar 

  • Hickox AE, Larsen E, Heinz MG, Shinobu L, Whitton JP (2017) Translational issues in cochlear synaptopathy. Hear Res 349:164–171. https://doi.org/10.1016/j.heares.2016.12.010

    Article  PubMed  PubMed Central  Google Scholar 

  • Hickox AE, Liberman MC (2014) Is noise-induced cochlear neuropathy key to the generation of hyperacusis or tinnitus? J Neurophysiol 111:552–564. https://doi.org/10.1152/jn.00184.2013

    Article  PubMed  Google Scholar 

  • Juiz JM, Rueda J, Merchán JA, Sala ML (1989) The effects of kainic acid on the cochlear ganglion of the rat. Hear Res 40:65–74. https://doi.org/10.1016/0378-5955(89)90100-7

    Article  CAS  PubMed  Google Scholar 

  • Keshishzadeh S, Garrett M, Vasilkov V, Verhulst S (2020) The derived-band envelope following response and its sensitivity to sensorineural hearing deficits. Hear Res 392:107979. https://doi.org/10.1016/j.heares.2020.107979

    Article  PubMed  Google Scholar 

  • Konishi M (1964) Effects of deafening on song development in two species of juncos. Condor 66:85–102

    Article  Google Scholar 

  • Kujawa SG, Liberman MC (2009) Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci 29:14077–14085. https://doi.org/10.1523/JNEUROSCI.2845-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kujawa SG, Liberman MC (2015) Synaptopathy in the noise-exposed and aging cochlea: primary neural degeneration in acquired sensorineural hearing loss. Hear Res 330:191–199

    Article  Google Scholar 

  • Kuwada S, Anderson JS, Batra R, Fitzpatrick DC, Teissier N, D’Angelo WR (2002) Sources of the scalp-recorded amplitude-modulation following response. J Am Acad Audiol 13(4):188–204

    Article  Google Scholar 

  • Liberman MC, Epstein MJ, Cleveland SS, Wang H, Maison SF (2016) Toward a differential diagnosis of hidden hearing loss in humans. PLoS One 11(9):1–15

    Article  Google Scholar 

  • Liberman LD, Liberman MC (2015) Dynamics of cochlear synaptopathy after acoustic overexposure. J Assoc Res Otolaryngol 16:205–219. https://doi.org/10.1007/s10162-015-0510-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin FR, Niparko JK, Ferrucci L (2011) Hearing loss prevalence in the United States. Arch Intern Med 171(20):1851–1852

    Article  Google Scholar 

  • Lobarinas E, Salvi R, Ding D (2013) Insensitivity of the audiogram to carboplatin induced inner hair cell loss in chinchillas. Hear Res 302:113–120

    Article  CAS  Google Scholar 

  • Long GR, Talmadge CL, Lee J (2008) Measuring distortion product otoacoustic emissions using continuously sweeping primaries. J Acoust Soc Am 124:1613–1626

    Article  Google Scholar 

  • Makary CA, Shin J, Kujawa SG, Liberman MC, Merchant SN (2011) Age-related primary cochlear neuronal degeneration in human temporal bones. J Assoc Res Otolaryngol 12(6):711–717

    Article  Google Scholar 

  • Mepani AM, Verhulst S, Liberman MC, Maison S. (2020) Detection of cochlear synaptopathy using EFRs: influence of stimulus envelope. Poster presentation at the American Auditory Society Scientific and Technology Meeting in Scottsdale, AZ

  • Mills J, Schmiedt R, Schulte B, Dubno J (2006) Age-related hearing loss: a loss of voltage, not hair cells. Semin Hear 27:228–236

    Article  Google Scholar 

  • Otte J, Schuknecht HF, Kerr AG (1978) Ganglion cell populations in normal and pathological human cochleae: implications for cochlear implantation. Laryngoscope. 88:1231–1246. https://doi.org/10.1288/00005537-197808000-00004

    Article  CAS  PubMed  Google Scholar 

  • Parthasarathy A, Kujawa SG (2018) Synaptopathy in the aging cochlea: characterizing early-neural deficits in auditory temporal envelope processing. J Neurosci 38(32):7108–7119

    Article  CAS  Google Scholar 

  • Prendergast G, Guest H, Munro KJ, Kluk K, Leger A, Hall DA, Heinz MG, Plack CJ (2017) Effects of noise exposure on young adults with normal audiograms I: electrophysiology. Hear Res 344:68–71

    Article  Google Scholar 

  • Pujol R, Lenoir M, Robertson D, Eybalin M, Johnstone BM (1985) Kainic acid selectively alters auditory dendrites connected with cochlear inner hair cells. Hear Res 18:145–151

    Article  CAS  Google Scholar 

  • Salvi RJ, Sun W, Ding DL, Chen GD, Lobarinas E, Wang J, Radziwon K, Auerbach BD (2017) Inner hair cell loss disrupts hearing and cochlear function leading to sensory deprivation and enhanced central auditory gain. Front Neurosci 10:1–14. https://doi.org/10.3389/fnins.2016.00621

    Article  Google Scholar 

  • Schaette R, McAlpine D (2011) Tinnitus with a normal audiogram: physiological evidence for hidden hearing loss and computational model. J Neurosci 31(38):13452–13457

    Article  CAS  Google Scholar 

  • Schermuly L, Klinke R (1985) Change of characteristic frequency of pigeon primary auditory afferents with temperature. J Comp Phys A 156:209–211. https://doi.org/10.1007/BF00610863

    Article  Google Scholar 

  • Schmiedt, RA. (2010). The physiology of cochlear presbycusis. In: Gordon-Salant S et al. (eds.) The aging auditory system, Springer handbook of auditory research 34, Springer Science + Business Media, pp 9-38

  • Schoonhoven R, Boden CJ, Verbunt JPA, De Munck JC (2003) A whole head MEG study of the amplitude-modulation-following response: phase coherence, group delay and dipole source analysis. Clin Neurophysiol 114(11):2096–2106

    Article  CAS  Google Scholar 

  • Schrode KM, Muniak MA, Kim YH, Lauer AM (2018) Central compensation in auditory brainstem after damaging noise exposure. eNeuro. 5(4):ENEURO.0250–ENEU18.2018. https://doi.org/10.1523/ENEURO.0250-18.2018

    Article  Google Scholar 

  • Schuknecht HF, Woellner RC (1953) Hearing losses following partial sectioning of the cochlear nerve. Laryngoscope. 63:441–465

    CAS  PubMed  Google Scholar 

  • Shaheen LA, Valero MD, Liberman MC (2015) Towards a diagnosis of cochlear neuropathy with envelope following responses. J Assoc Res Otolaryngol 16(6):727–745

    Article  Google Scholar 

  • Shero M, Salvi RJ, Chen L, Hashino E (1998) Excitotoxic effect of kainic acid on chicken cochlear afferent neurons. Neurosci Lett 257:81–84. https://doi.org/10.1016/S0304-3940(98)00821-0

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Salvi RJ, Ding DL, Hashino E, Shero M, Zheng XY (2000) Excitotoxic effect of kainic acid on chicken otoacoustic emissions and cochlear potentials. J Acoust Soc Am 107:2136–2142. https://doi.org/10.1121/1.428495

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Hashino E, Ding DL, Salvi RJ (2001) Reversible and irreversible damage to cochlear afferent neurons by kainic acid excitotoxicity. J Comp Neurol 430:172–181

    Article  CAS  Google Scholar 

  • Valero MD, Burton JA, Hauser SN, Hackett TA, Ramachandran R, Liberman MC (2017) Noise-induced cochlear synaptopathy in rhesus monkeys (Macaca mulatta). Hear Res 353:213–223

    Article  CAS  Google Scholar 

  • Verhulst S, Altoe A, Vasilkov V (2018) Computational modeling of the human auditory periphery: auditory-nerve responses, evoked potentials and hearing loss. Hear Res 360:55–75

    Article  Google Scholar 

  • Wong SJ, Abrams KS, Amburgey KN, Wang Y, Henry KS (2019) Effects of selective auditory-nerve damage on the behavioral audiogram and temporal integration in the budgerigar. Hear Res 374:24–34

    Article  Google Scholar 

  • Yeend I, Beach EF, Sharma M, Dillon H (2017) The effects of noise exposure and musical training on suprathreshold auditory processing and speech perception in noise. Hear Res 353:224–236

    Article  Google Scholar 

  • Yuan Y, Shi F, Yin Y, Tong M, Lang H, Polley DB, Liberman MC, Edge ASB (2014) Ouabain-induced cochlear nerve degeneration: synaptic loss and plasticity in a mouse model of auditory neuropathy. J Assoc Res Otolaryngol 15:31–43. https://doi.org/10.1007/s10162-013-0419-7

    Article  PubMed  Google Scholar 

  • Zaaroor M, Starr A (1991) Auditory brain-stem evoked potentials in cat after kainic acid induced neuronal loss. I. Superior olivary complex. Electroencephaolgr Clin Neurophysiol 80:422–435. https://doi.org/10.1016/0168-5597(91)90091-b

    Article  CAS  Google Scholar 

  • Zheng XY, Wang J, Salvi RJ, Henderson D (1996) Effects of kainic acid on the cochlear potentials and distortion product otoacoustic emissions in chinchilla. Hear Res 95:161–167. https://doi.org/10.1016/0378-5955(96)00047-0

    Article  CAS  PubMed  Google Scholar 

  • Zhong Z, Henry KS, Heinz MG (2014) Sensorineural hearing loss amplifies neural coding of envelope information in the central auditory system of chinchillas. Hear Res 309:55–62

    Article  Google Scholar 

Download references

Acknowledgments

Laurel Carney provided helpful comments on a previous version of the manuscript. This research was supported by a National Institute on Deafness and Other Communication Disorders grant (R00-DC013792 and R01-DC017519; P.I.: Henry) and a National Institutes of Health Ruth L. Kirschstein Individual Predoctoral National Research Service Award Fellowship (TL1 TR002000) administered by the University of Rochester Clinical and Translational Science Institute. The content of this publication is solely the responsibility of the author and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

JLW and KSH designed the research, performed the experiments, analyzed the data, and wrote the manuscript. KSA performed the experiments.

Corresponding author

Correspondence to Kenneth S. Henry.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilson, J.L., Abrams, K.S. & Henry, K.S. Effects of Kainic Acid-Induced Auditory Nerve Damage on Envelope-Following Responses in the Budgerigar (Melopsittacus undulatus). JARO 22, 33–49 (2021). https://doi.org/10.1007/s10162-020-00776-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-020-00776-x

Keywords

Navigation