Skip to main content

Hearing Organ Evolution and Specialization: Archosaurs

  • Chapter
Evolution of the Vertebrate Auditory System

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 22))

Abstract

Among amniotes a group named archosaurs includes the crocodilians, extinct dinosaurs, and birds (see Phylogeny, below). Because of these evolutionary relationships, the archosaurs are considered together in this chapter. The available data on inner-ear structure and function from different archosaur species (various birds and Caiman crocodilus) is combined and reviewed, in an attempt to identify the putative primitive condition and subsequent specializations that occurred during evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baird IL (1974) Anatomical features of the inner ear in submammalian vertebrates. In Keidel WD, Neff WD (eds) Handbook of Sensory Physiology, vol V/1. Berlin Heidelberg, New York: Springer, pp. 159–212.

    Google Scholar 

  • Boles WE (1995) The world’ s oldest songbird. Nature 374:21–22.

    Article  CAS  Google Scholar 

  • Cao Y, Sorenson MD, Kumazawa Y, Mindell DP, Hasegawa M (2000) Phylogenetic position of turtles among amniotes: evidence from mitochondrial and nuclear genes. Gene 259:139–148.

    Article  PubMed  CAS  Google Scholar 

  • Carroll RL (1988) Vertebrate Palaeontology and Evolution. York: Freeman.

    Google Scholar 

  • Carroll RL (1997) Patterns and process of vertebrate evolution. York: Cambridge University Press.

    Google Scholar 

  • Chen L, Salvi R, Shero M (1994) Cochlear frequency-place map in adult chickens: intracellular biocytin labeling. Hear Res 81:130–136.

    Article  PubMed  CAS  Google Scholar 

  • Cotanche DA, Henson MM, Henson OW Jr (1992) Contractile protein s in the hyaline cells of the chicken cochlea. J Comp Neurol 324:353–364.

    Article  PubMed  CAS  Google Scholar 

  • Dannhof BJ, Bruns V (1993) The innervation of the organ of Corti in the rat. Hear Res 66:8–22.

    Article  PubMed  CAS  Google Scholar 

  • Dooling RJ (1982) Auditory perception in birds. In: Kroodsma DE, Miller EH (eds) Acoustic Communication in Birds, vol. I. New York: Academic Press, pp. 95–130.

    Google Scholar 

  • Dooling RJ (1992) Hearing in birds. In: Fay RR, Popper AN, Webster DB (eds) The Evolutionary Biology of Hearing. Heidelberg, York: Springer-Verlag, pp. 545–559.

    Chapter  Google Scholar 

  • Dooling RJ, Ryals BM (1995) Effects of acoustic overstimulation on four species of birds. In: Manley GA, Klump GM, Köppl C, Fastl H, Oeckinghaus H (eds) Advances in Hearing Research. Singapore: World Scientific, pp. 32–39.

    Google Scholar 

  • Dooling RJ, Saunders JC (1975) Hearing in the parakeet (Melopsittacus undulatus): absolute thresholds, critical ratios, frequency difference limens, and vocalizations. J Comp Physiol Psych 88:1–20.

    Article  CAS  Google Scholar 

  • Dooling RJ, Mulligan JA, Miller ID (1971) Auditory sensitivity and song spectrum of the common canary (Serinus canarius). J Acoust Soc Am 50:700–709.

    Article  PubMed  CAS  Google Scholar 

  • Dooling RJ, Okanoya K, Downing J, Hulse S (1986) Hearing in the starling (Sturnus vulgaris): Absolute thresholds and critical ratios. Bull Psychonom Soc 24:462–464.

    Google Scholar 

  • Durham D, Park DL, Girod DA. (2002) Breed differences in cochlear integrity in adult, commercially raised chickens. Hear Res 166:82–95.

    Article  PubMed  Google Scholar 

  • Düring M von, Karduck A, Richter H (1974) The fine structure of the inner ear in Caiman crocodylus. Z Anat Entwickl Gesch 145:41–65.

    Article  Google Scholar 

  • Düring M von, Andres KH, Simon K (1985) The comparative anatomy of the basilar papillae in birds. Fortschr Zool 30:681–685.

    Google Scholar 

  • Dyson ML, Klump GM, Gauger B (1998) Absolute hearing thresholds and critical masking ratios in the European barn owl: a comparison with other owls. J Comp Physio [A] 182:695–702.

    Article  Google Scholar 

  • Fay RR (1988) Hearing in Vertebrates: A Psychophysics Databook. Winnetka, IL: Hill-Fay Associates.

    Google Scholar 

  • Feduccia A (1980) The Age of Birds. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Feduccia A (1995) Explosive evolution in tertiary birds and mammals. Science 267:637–638.

    Article  PubMed  CAS  Google Scholar 

  • Fennin CD, Cohen GM (1984) Development of the embryonic chick’s statoacoustic ganglion. Acta Otolaryngol (Stockh) 98:42–52.

    Article  Google Scholar 

  • Fischer FP (1992) Quantitative analysis of the innervation of the chicken basilar papilla. Hear Res 61:167–178.

    Article  PubMed  CAS  Google Scholar 

  • Fischer FP (1994) Quantitative TEM analysis of the barn owl basilar papilla. Hear Res 73:1–15.

    Article  PubMed  CAS  Google Scholar 

  • Fischer FP (1998) Hair-cell morphology and innervation in the basilar papilla of the emu (Dromaius novaehollandiae). Hear Res 121:112–124.

    Article  PubMed  CAS  Google Scholar 

  • Fischer FP, Junker M (2000) Complex innervation pattern in the basilar papilla of a bird, the Australian emu. 23rd Midwinter Research Meeting of the Association of Research Otolaryngology, abstract, p. 279.

    Google Scholar 

  • Fischer FP, Köppl C, Manley GA (1988) The basilar papilla of the barn owl Tyto alba: A quantitative morphological SEM analysis. Hear Res 34:87–102.

    Article  PubMed  CAS  Google Scholar 

  • Fischer FP, Brix J, Singer I, Miltz C (1991) Contacts between hair cells in the avian cochlea. Hear Res 53:281–292.

    Article  PubMed  CAS  Google Scholar 

  • Fischer FP, Singer I, Miltz C, Manley GA (1992) Morphological gradients in the starling basilar papilla. J Morphol 213:225–240.

    Article  Google Scholar 

  • Fischer FP, Eisensamer B, Manley GA (1994) Cochlear and lagenar ganglia of the chicken. J Morphol 220:71–83.

    Article  PubMed  CAS  Google Scholar 

  • Garrick LD, Lang JW, Herzog HA (1978) Social signals of adult American alligators. Bull Am Mus Nat Hist 160:153–192.

    Google Scholar 

  • Gleich 0 (1989) Auditory primary afferents in the starling: correlation of function and morphology. Hear Res 37:255–268.

    Article  PubMed  CAS  Google Scholar 

  • Gleich O, Manley GA (1988) Quantitative morphological analysis of the sensory epithelium of the starling and pigeon basilar papilla. Hear Res 34:69–86.

    Article  PubMed  CAS  Google Scholar 

  • Gleich O, Manley GA (2000) The hearing organ of birds and crocodilia. In: Dooling RJ, Fay RR, Popper AN (eds) Comparative Hearing: Birds and Reptile s. York: Springer, pp. 70–138.

    Chapter  Google Scholar 

  • Gleich O, Manley GA, Mandl A, Dooling R (1994) The basilar papilla of the canary and the zebra finch: a quantitative scanning electron microscopic description. J Morphol 221:1–24.

    Article  Google Scholar 

  • Gleich O, Dooling RI, Presson JC (1997) Evidence for supporting cell proliferation and hair cell differentiat ion in the basilar papilla of adult Belgian Waterslager canaries (Serinus canarius). J Comp Neurol 377:5–15.

    Article  PubMed  CAS  Google Scholar 

  • Graybeal A, Rosowski JJ, Ketten DR, Crompton AW(1989) Inner-ear structure in Morganucodon, an early jurassic mammal. Zool J Linn Soc 96:107–117.

    Article  Google Scholar 

  • Greenwood DD (1990) A cochlear frequency-position function for several species—29 years later. J Acoust Soc Am 87:2592–2605.

    Article  PubMed  CAS  Google Scholar 

  • Gunga H-Chr, Kirsch KA, Baartz F, Röcker L, Heinrich W-D, Lisowski W, Wiedemann A, Albertz J (1995) New data on the dimensions of Brachiosaurus brancai and their physiological implications. Naturwiss 82:190–192.

    CAS  Google Scholar 

  • Hashino E, Okanoya K (1989) Auditory sensitivity of the zebra finch (Poephila guttata castanotis). J Acoust Soc Jpn (E) 10:51–52.

    Article  Google Scholar 

  • Jones SM, Jones TA (1995) The tonotopic map in the embryonic chicken cochlea. Hear Res 82:149–157.

    Article  PubMed  CAS  Google Scholar 

  • Knudsen El, Konishi M (1979) Mechanisms of sound localization in the barn owl (Tyto alba). J Comp Physiol [AJ 133:13–21.

    Article  Google Scholar 

  • Konishi M (1973) How the owl tracks its prey. Am Sci 61:414–424.

    Google Scholar 

  • Konishi M (1993) Listening with two ears. Sci Am 268:66–73.

    Article  PubMed  CAS  Google Scholar 

  • Konishi M, Knudsen EI (1979) The oilbird: hearing and echolocation. Science 204:425–427.

    Article  PubMed  CAS  Google Scholar 

  • Köppl C (1993) Hair-cell specializations and the auditory fovea in the barn owl cochlea. In: Duifhuis H, Horst JW, van Dijk P, van Netten SM (eds) Biophysics of Hair Cell Sensory Systems. Singapore: World Scientific Publishing, pp. 216–222.

    Google Scholar 

  • Köppl C (1997) Number and axon calibres of cochlear afferents in the barn owl. Auditory Neurosci 3:313–334.

    Google Scholar 

  • Köppl C (2001) Efferent axons in the avian auditory nerve. Eur J Neurosci 13:1889–1901.

    Article  PubMed  Google Scholar 

  • Köppl C, Manley GA (1997) Frequency representation in the emu basilar papilla. J Acoust Soc Am 101:1574–1584.

    Article  Google Scholar 

  • Köppl C, Gleich O, Manley GA (1993) An auditory fovea in the barn owl cochlea. J Comp Physiol [A] 171:695–704.

    Article  Google Scholar 

  • Köppl C, Gleich O, Schwabedissen G, Siegl E, Manley GA (1998) Fine structure of the basilar papilla of the emu: implications for the evolution of avian hair-cell types. Hear Res 126:99–112.

    Article  PubMed  Google Scholar 

  • Köppl C, Wegscheider A, Gleich O, Manley GA (2000) A quantitative study of cochlear afferent axons in birds. Hear Res 139:123–143.

    Article  PubMed  Google Scholar 

  • Kreithen ML, Quine DB (1979) Infrasound detection by the homing pigeon: a behavioural audiogram. J Comp Physiol [A] 129:1–4.

    Article  Google Scholar 

  • Kuhn A, Müller CM, Leppelsack H-J, Schwartzkopff J (1982) Heart rate conditioning used for determination of auditory thresholds in the starling. Naturwiss 69:245–246.

    Article  PubMed  CAS  Google Scholar 

  • Lavigne-Rebillard M, Cousillas H, Pujol R (1985) The very distal part of the basilar papilla in the chicken: a morphological approach. J Comp Neurol 238:340–347.

    Article  PubMed  CAS  Google Scholar 

  • Leake PA (1977) SEM observations of the cochlear duct in Caiman crocodilus. Scan Electron Micosc 2:437–444.

    Google Scholar 

  • Linzenbold A, Dooling RJ, Ryals BM (1993) A behavioral audibility curve for the Japanese quail (Coturnix coturnix japonica). 16th Midwinter Research Meeting of the Association of Research Otolaryngology, abstract, p. 211.

    Google Scholar 

  • Mandl A (1992) Eine quantitative, morphologische Untersuchung der Papilla basilaris des Kanarienvogels (Serinus canarius). Diplom-Thesis at the Department of Zoology of the Technical University of Munich.

    Google Scholar 

  • Manley GA (1990) Peripheral Mechanisms in Reptiles and Birds. Berlin: Springer-Verlag.

    Book  Google Scholar 

  • Manley GA, Brix J, Kaiser A (1987) Developmental stability of the tonotopic organization of the chick’s basilar papilla. Science 237:655–656.

    Article  PubMed  CAS  Google Scholar 

  • Manley GA, Schwabedissen G, Gleich O (1993) Morphology of the basilar papilla of the budgerigar Melopsittacus undulatus. J Morphol 218:153–165.

    Google Scholar 

  • Manley GA, Meyer B, Fischer FP, Schwabedissen G, Gleich O (1996) Surface morphology of the basilar papilla of the tufted duck Aythya fuligula and the domestic chicken Gallus gallus domesticus. J Morphol 227:197–212.

    Article  PubMed  CAS  Google Scholar 

  • Mindell DP, Sorenson MD, Dimcheff DE, Hasegawa M, Ast JC, Yuri T (1999) Interordinal relationships of birds and other reptiles based on whole mitochondrial genomes. Syst Biol 48:138–152.

    Article  PubMed  CAS  Google Scholar 

  • Moiseff A (1989) Binaural disparity cues available to the barn owl for sound localization. J Comp Physiol [A] 164:629–636.

    Article  CAS  Google Scholar 

  • Niemiec AJ, Raphael Y, Moody DB (1994) Return of auditory function following structural regeneration after acoustic trauma: behavioral measures from quail. Hear Res 79:1–16.

    Article  PubMed  CAS  Google Scholar 

  • Oesterle EC, Cunningham DE, Rubel EW (1992) Ultrastructure of hyaline, border, and vacuole cells in chick inner ear. J Comp Neurol 318:64–82.

    Article  PubMed  CAS  Google Scholar 

  • Okanoya K, Dooling RJ (1985) Colony differences in auditory thresholds in the canary (Serinus canarius). J Acoust Soc Am 78:1170–1176.

    Article  PubMed  CAS  Google Scholar 

  • Okanoya K, Dooling RJ (1987a) Hearing in passerine and psittacine birds: a comparative study of masked and absolute auditory thresholds. J Comp Psychol 101:7–15.

    Article  PubMed  CAS  Google Scholar 

  • Okanoya K, Dooling RJ (1987b) Strain differences in auditory thresholds in the canary (Serinus canarius). J Comp Psychol 101:213–215.

    Article  PubMed  CAS  Google Scholar 

  • Okanoya K, Dooling RJ (1990) Detection of gaps in noise by budgerigars (Melopsittacus undulatus) and zebra finches (Poephila guttata). Hear Res 50:185–192.

    Article  PubMed  CAS  Google Scholar 

  • Olson SL (1985) The fossil record of birds. In: Farner D, King J, Parkes K (eds) Avian Biology, vol 8. York: Academic Press, pp. 79–238.

    Google Scholar 

  • Payne RS (1971) Acoustic location of prey by barn owls (Tyto alba). J Exp Biol 54:535–573.

    PubMed  CAS  Google Scholar 

  • Pugliano FA, Wilcox TO, Rossiter J, Saunders, JC (1993) Recovery of auditory structure and function in neonatal chicks exposed to intense sound for 8 days. Neurosci Lett 151:214–218.

    Article  PubMed  CAS  Google Scholar 

  • Rogers SW (1998) Exploring Dinosaur neuropalaeobiology: computed tomography scanning analysis of an Allosaurus fragilis endocasts. Neuron 21:673–679.

    Google Scholar 

  • Ryals BM, Dooling RJ, Westbrook E, Dent ML, MacKenzie A, Larsen ON (1999) Avian species differences in susceptibility to noise exposure. Hear Res 131:71–88.

    Article  PubMed  CAS  Google Scholar 

  • Saunders J, Dooling RJ (1974) Noise-induced threshold shift in the parakeet (Melopsit-tacus undulatus). Proc Natl Acad Sci USA 71:1962–1965.

    Article  PubMed  CAS  Google Scholar 

  • Saunders J, Pallone R (1980) Frequency selectivity in the parakeet studied by isointensity masking contours. J Exp Biol 87:331–342.

    Google Scholar 

  • Saunders J, Rintelmann W, Bock G (1979) Frequency selectivity in bird and man: a comparison among critical ratios, critical bands and psychophysical tuning curves. Hear Res 1:303–323.

    Article  PubMed  CAS  Google Scholar 

  • Saunders JC, Duncan RK, Doan DE, Werner YL (2000) The middle ear of reptiles and birds. In: Dooling RJ, Fay RR, Popper AN (eds) Comparative Hearing: Birds and Reptiles. York: Springer, pp. 13–69.

    Chapter  Google Scholar 

  • Saunders SS, Salvi RJ (1993) Psychoacoustics of normal adult chickens: thresholds and temporal integration. J Acoust Soc Am 94:83–90.

    Article  PubMed  CAS  Google Scholar 

  • Schermuly L, Klinke R (1990a) Infrasound sensitive neurones in the pigeon’s cochlear ganglion. J Comp Physiol [A] 166:355–363.

    CAS  Google Scholar 

  • Schermuly L, Klinke R (1990b) Origin of infrasound sensitive neurones in the papilla basilaris of the pigeon: a HRP study. Hear Res 48:69–78.

    Article  PubMed  CAS  Google Scholar 

  • Schwartzkopff J, Winter P (1960) Zur Anatomie der Vogel-Cochlea unter natürlichen Bedingungen. Biol Zentralblatt 79:607–625.

    Google Scholar 

  • Sibley CG, Ahlquist JE (1990) Phylogeny and Classification of Birds: A Study in Molecular Evolution. Haven, CT: Yale University Press.

    Google Scholar 

  • Smith CA, Konishi M, Schull N (1985) Structure of the barn owl’s (Tyto alba) inner ear. Hear Res 17:237–247.

    Article  PubMed  CAS  Google Scholar 

  • Smolders JWT (1999) Functional recovery in the avian ear after hair cell regeneration. Audiol Neurootol 4:286–302.

    Article  PubMed  CAS  Google Scholar 

  • Smolders JWT, Klinke R (1986) Synchronized responses of primary auditory fibre populations in Caiman crocodilus (L.) to single tones and clicks. Hear Res 24:89–103.

    Article  PubMed  CAS  Google Scholar 

  • Smolders JWT, Ding-Pfennigdorff D, Klinke R (1995) A functional map of the pigeon basilar papilla: correlation of the properties of single auditory nerve fibres and their peripheral origin. Hear Res 92:151–169.

    Article  PubMed  CAS  Google Scholar 

  • Takasaka T, Smith CA (1971) The structure and innervation of the pigeon’s basilar papilla. J Ultrastruct Res 35:20–65.

    Article  PubMed  CAS  Google Scholar 

  • Tilney LG, Saunders JC (1983) Actin filaments, stereocilia, and hair cells of the bird cochlea. I. Length, number, width, and distribution of stereocilia of each hair cell are related to the position of the hair cell on the cochlea. J Cell Biol 96:807–821.

    Article  PubMed  CAS  Google Scholar 

  • Trainer JE (1946) The Auditory Acuity of Certain Birds. PhD Thesis, Cornell University, Ithaca, NY.

    Google Scholar 

  • Warchol ME, Dallos P (1989) Neural response to very low-frequency sound in the avian cochlear nucleus. J Comp Physiol [A] 166:83–95.

    CAS  Google Scholar 

  • Wilson JP, Smolders JWT, Klinke R (1985) Mechanics of the basilar membrane in Caiman crocodilus. Hear Res 18:1–24.

    Article  PubMed  CAS  Google Scholar 

  • Zidanic M, Fuchs PA (1996) Synapsin-like immunoreactivity in the chick-cochlea: specific labeling of efferent nerve terminals. Auditory Neurosci 2:347–362.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gleich, O., Fischer, F.P., Köppl, C., Manley, G.A. (2004). Hearing Organ Evolution and Specialization: Archosaurs. In: Manley, G.A., Fay, R.R., Popper, A.N. (eds) Evolution of the Vertebrate Auditory System. Springer Handbook of Auditory Research, vol 22. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8957-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8957-4_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-21093-3

  • Online ISBN: 978-1-4419-8957-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics