Skip to main content
Log in

Age-Related Changes in Processing Simultaneous Amplitude Modulated Sounds Assessed Using Envelope Following Responses

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

Listening conditions in the real world involve segregating the stimuli of interest from competing auditory stimuli that differ in their sound level and spectral content. It is in these conditions of complex spectro-temporal processing that listeners with age-related hearing loss experience the most difficulties. Envelope following responses (EFRs) provide objective neurophysiological measures of auditory processing. EFRs were obtained to two simultaneous sinusoidally amplitude modulated (sAM) tones from young and aged Fischer-344 rats. One was held at a fixed suprathreshold sound level (sAM1FL) while the second varied in sound level (sAM2VL) and carrier frequency. EFR amplitudes to sAM1FL in the young decreased with signal-to-noise ratio (SNR), and this reduction was more pronounced when the sAM2VL carrier frequency was spectrally separated from sAM1FL. Aged animals showed similar trends, while having decreased overall response amplitudes compared to the young. These results were replicated using an established computational model of the auditory nerve. The trends observed in the EFRs were shown to be due to the contributions of the low-frequency tails of high-frequency neurons, rather than neurons tuned to the sAM1FL carrier frequency. Modeling changes in threshold and neural loss reproduced some of the changes seen with age, but accuracy improved when combined with an additional decrease representing synaptic loss of auditory nerve neurons. Sound segregation in this case derives primarily from peripheral processing, regardless of age. Contributions by more central neural mechanisms are likely to occur only at low SNRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alain C, McDonald KL (2007) Age-related differences in neuromagnetic brain activity underlying concurrent sound perception. J Neurosci 27:1308–1314

    Article  CAS  PubMed  Google Scholar 

  • Anderson S, Parbery-Clark A, White-Schwoch T, Kraus N (2012) Aging affects neural precision of speech encoding. J Neurosci 32(41):14156–64. doi:10.1523/JNEUROSCI.2176-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bacon SP, Grantham DW (1989) Modulation masking—effects of modulation frequency, depth, and phase. J Acoust Soc Am 85:2575–2580

    Article  CAS  PubMed  Google Scholar 

  • Bacon SP, Konrad DL (1993) Modulation detection interference under conditions favoring within- or across-channel processing. J Acoust Soc Am 93:1012–1022

    Article  CAS  PubMed  Google Scholar 

  • Bacon SP, Moore BCJ (1993) Modulation detection interference—some spectral effects. J Acoust Soc Am 93:3442–3453

    Article  CAS  PubMed  Google Scholar 

  • Bharadwaj HM, Verhulst S, Shaheen L, Liberman MC, Shinn-Cunningham BG (2014) Cochlear neuropathy and the coding of supra-threshold sound. Front Syst Neurosci 8:26. doi:10.3389/fnsys.2014.00026

    Article  PubMed  PubMed Central  Google Scholar 

  • Bidet-Caulet A, Fischer C, Besle J, Aguera PE, Giard MH, Bertrand O (2007) Effects of selective attention on the electrophysiological representation of concurrent sounds in the human auditory cortex. J Neurosci 27:9252–9261

    Article  CAS  PubMed  Google Scholar 

  • Bregman AS (1990) Auditory scene analysis: the perceptual organization of sound. MIT Press, Cambridge, MA

    Google Scholar 

  • Buchwald JS, Huang CM (1975) Far-field acoustic response—origins in cat. Science 189:382–384

    Article  CAS  PubMed  Google Scholar 

  • Buckiova D, Popelar J, Syka J (2007) Aging cochleas in the F344 rat: morphological and functional changes. Exp Gerontol 42:629–638

    Article  CAS  PubMed  Google Scholar 

  • Caspary DM, Ling L, Turner JG, Hughes LF (2008) Inhibitory neurotransmission, plasticity and aging in the mammalian central auditory system. J Exp Biol 211:1781–1791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandrasekaran B, Kraus N (2010) The scalp-recorded brainstem response to speech: neural origins and plasticity. Psychophysiology 47:236–246

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen GD, Li MN, Tanaka C, Bielefeld EC, Hu BH, Kermany MH, Salvi R, Henderson D (2009) Aging outer hair cells (OHCs) in the Fischer 344 rat cochlea: function and morphology. Hear Res 248:39–47

    Article  PubMed  Google Scholar 

  • Clinard CG, Tremblay KL, Krishnan AR (2010) Aging alters the perception and physiological representation of frequency: evidence from human frequency-following response recordings. Hear Res 264:48–55

    Article  PubMed  PubMed Central  Google Scholar 

  • Cui YL, Holt AG, Lomax CA, Altschuler RA (2007) Deafness associated changes in two-pore domain potassium channels in the rat inferior colliculus. Neuroscience 149:421–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dolphin WF (1995) The envelope following response to multiple tone pair stimuli. In: 16th International-Evoked-Audiometry-Study-Group Meeting. Lyon, France, pp 1–14

    Google Scholar 

  • Dubno JR, Dirks DD, Morgan DE (1984) Effects of age and mild hearing-loss on speech recognition in noise. J Acoust Soc Am 76:87–96

    Article  CAS  PubMed  Google Scholar 

  • Fitzgibbons PJ, Gordon-Salant S (1996) Auditory temporal processing in elderly listeners. J Am Acad Audiol 7:183–189

    CAS  PubMed  Google Scholar 

  • Frisina DR, Frisina RD (1997) Speech recognition in noise and presbycusis: relations to possible neural mechanisms. Hear Res 106:95–104

    Article  CAS  PubMed  Google Scholar 

  • Fullgrabe C, Moore BCJ, Stone MA (2015) Age-group differences in speech identification despite matched audiometrically normal hearing: contributions from auditory temporal processing and cognition. Front Aging Neurosci 6:347. doi:10.3389/fnagi.2014.00347

    PubMed  PubMed Central  Google Scholar 

  • Greenwood DD (1990) A cochlear frequency-position function for several species--29 years later. J Acoust Soc Am 87(6):2592–2605

  • Grimault N, Micheyl C, Carlyon RP, Arthaud P, Collet L (2001) Perceptual auditory stream segregation of sequences of complex sounds in subjects with normal and impaired hearing. Br J Audiol 35:173–182

    CAS  PubMed  Google Scholar 

  • Hall JW, Grose JH (1991) Some effects of auditory grouping factors on modulation detection interference (MDI). J Acoust Soc Am 90:3028–3035

    Article  PubMed  Google Scholar 

  • Hashimoto I, Ishiyama Y, Yoshimoto T, Nemoto S (1981) Brain-stem auditory-evoked potentials recorded directly from human brain-stem and thalamus. Brain 104:841–859

    Article  CAS  PubMed  Google Scholar 

  • He NJ, Mills JH, Dubno JR (2007) Frequency modulation detection: effects of age, psychophysical method, and modulation waveform. J Acoust Soc Am 122:467–477

    Article  PubMed  Google Scholar 

  • Herdman AT, Stapells DR (2003) Auditory steady-state response thresholds of adults with sensorineural hearing impairments. Int J Audiol 42:237–248

    Article  PubMed  Google Scholar 

  • Hind SE, Haines-Bazrafshan R, Benton CL, Brassington W, Towle B, Moore DR (2011) Prevalence of clinical referrals having hearing thresholds within normal limits. Int J Audiol 50:708–716

    Article  PubMed  Google Scholar 

  • Johnsrude IS, Mackey A, Hakyemez H, Alexander E, Trang HP, Carlyon RP (2013) Swinging at a cocktail party: voice familiarity aids speech perception in the presence of a competing voice. Psychol Sci 24:1995–2004

    Article  PubMed  Google Scholar 

  • King A, Hopkins K, Plack CJ (2014) The effects of age and hearing loss on interaural phase difference discrimination. J Acoust Soc Am 135:342–351

    Article  PubMed  Google Scholar 

  • Kiren T, Aoyagi M, Furuse H, Koike Y (1994) An experimental-study on the generator of amplitude-modulation following response. Acta Oto-Laryngologica 28–33

  • Kujawa SG, Liberman MC (2015) Synaptopathy in the noise-exposed and aging cochlea: primary neural degeneration in acquired sensorineural hearing loss. Hear Res 330:191–199. doi:10.1016/j.heares.2015.02.009

  • Kuwada S, Anderson JS, Batra R, Fitzpatrick DC, Teissier N, D’Angelo WR (2002) Sources of the scalp-recorded amplitude-modulation following response. J Am Acad Audiol 13:188–204

    PubMed  Google Scholar 

  • Liberman MC (1978) Auditory-nerve response from cats raised in a low-noise chamber. J Acoust Soc Am 63:442–455

    Article  CAS  PubMed  Google Scholar 

  • Lins OG, Picton TW (1995) Auditory steady-state responses to multiple simultaneous stimuli. Electroencephalogr Clin Neurophysiol 96:420–432

    Article  CAS  PubMed  Google Scholar 

  • McNerney KM, Burkard RF (2010) The effects of a second stimulus on the auditory steady state response (ASSR) from the inferior colliculus of the chinchilla. Int J Audiol 49:561–573

    Article  PubMed  Google Scholar 

  • Mendoza L, Hall JW, Grose JH (1995) Within-channel and across-channel processes in modulation detection interference. J Acoust Soc Am 97:3072–3079

    Article  CAS  PubMed  Google Scholar 

  • Micheyl C, Bernstein JGW, Oxenham AJ (2006) Detection and F0 discrimination of harmonic complex tones in the presence of competing tones or noise. J Acoust Soc Am 120:1493–1505

    Article  PubMed  Google Scholar 

  • Miko IJ, Sanes DH (2009) Transient gain adjustment in the inferior colliculus is serotonin- and calcium-dependent. Hear Res 251:39–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore BCJ, Fullgrabe C, Stone MA (2010) Effect of spatial separation, extended bandwidth, and compression speed on intelligibility in a competing-speech task. J Acoust Soc Am 128:360–371

    Article  PubMed  Google Scholar 

  • Nakamoto KT, Shackleton TM, Palmer AR (2010) Responses in the inferior colliculus of the guinea pig to concurrent harmonic series and the effect of inactivation of descending controls. J Neurophys 103:2050–2061

    Article  Google Scholar 

  • Nelson PC, Carney LH (2004) A phenomenological model of peripheral and central neural responses to amplitude-modulated tones. J Acoust Soc Am 116:2173–2186

    Article  PubMed  PubMed Central  Google Scholar 

  • Parthasarathy A, Bartlett EL (2011) Age-related auditory deficits in temporal processing in F-344 rats. Neuroscience 192:619–630

    Article  CAS  PubMed  Google Scholar 

  • Parthasarathy A, Bartlett E (2012) Two-channel recording of auditory-evoked potentials to detect age-related deficits in temporal processing. Hear Res 289(1-2):52–62

    Article  PubMed  PubMed Central  Google Scholar 

  • Parthasarathy A, Cunningham PA, Bartlett EL (2010) Age-related differences in auditory processing as assessed by amplitude-modulation following responses in quiet and in noise. Front Aging Neurosci 2:152. doi:10.3389/fnagi.2010.00152

    Article  PubMed  PubMed Central  Google Scholar 

  • Parthasarathy A, Datta J, Torres JAL, Hopkins C, Bartlett EL (2014) Age-related changes in the relationship between auditory brainstem responses and envelope-following responses. J Assoc Res Otolaryngol 15:649–661

    Article  PubMed  PubMed Central  Google Scholar 

  • Plyler PN, Fleck EL (2006) The effects of high-frequency amplification on the objective and subjective performance of hearing instrument users with varying degrees of high-frequency hearing loss. J Speech Lang Hear Res 49:616–627

    Article  PubMed  Google Scholar 

  • Rabang CF, Parthasarathy A, Venkataraman Y, Fisher ZL, Gardner SM, Bartlett EL (2012) A computational model of inferior colliculus responses to amplitude modulated sounds in young and aged rats. Front Neural Circuits 6:77. doi:10.3389/fncir.2012.00077

    Article  PubMed  PubMed Central  Google Scholar 

  • Ross B, Draganova R, Picton TW, Pantev C (2003) Frequency specificity of 40-Hz auditory steady-state responses. Hear Res 186:57–68

    Article  PubMed  Google Scholar 

  • Ruggles D, Bharadwaj H, Shinn-Cunningham BG (2012) Why middle-aged listeners have trouble hearing in everyday settings. Curr Biol 22:1417–1422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmiedt RA (1989) Spontaneous rates, thresholds and tuning of auditory-nerve fibers in the gerbil—comparisons to cat data. Hear Res 42:23–35

    Article  CAS  PubMed  Google Scholar 

  • Schmiedt RA, Mills JH, Boettcher FA (1996) Age-related loss of activity of auditory-nerve fibers. J Neurophys 76:2799–2803

    CAS  Google Scholar 

  • Sergeyenko Y, Lall K, Liberman MC, Kujawa SG (2013) Age-related cochlear synaptopathy: an early-onset contributor to auditory functional decline. J Neurosci 33:13686–13694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaheen LA, Valero MD, Liberman MC (2015) Towards a diagnosis of cochlear neuropathy with envelope following responses. J Assoc Res Otolaryngol 16(6):727–45. doi:10.1007/s10162-015-0539-3

    Article  PubMed  Google Scholar 

  • Trujillo M, Razak KA (2013) Altered cortical spectrotemporal processing with age-related hearing loss. J Neurophys 110:2873–2886

    Article  Google Scholar 

  • Turner CW, Henry BA (2002) Benefits of amplification for speech recognition in background noise. J Acoust Soc Am 112:1675–1680

    Article  PubMed  Google Scholar 

  • Yost WA, Sheft S (1994) Modulation detection interference—across-frequency processing and auditory grouping. Hear Res 79:48–58

    Article  CAS  PubMed  Google Scholar 

  • Yost WA, Sheft S, Opie J (1989) Modulation interference in detection and discrimination of amplitude-modulation. J Acoust Soc Am 86:2138–2147

    Article  CAS  PubMed  Google Scholar 

  • Zilany MSA, Bruce IC, Nelson PC, Carney LH (2009) A phenomenological model of the synapse between the inner hair cell and auditory nerve: long-term adaptation with power-law dynamics. J Acoust Soc Am 126:2390–2412

    Article  PubMed  PubMed Central  Google Scholar 

  • Zilany MSA, Bruce IC, Carney LH (2014) Updated parameters and expanded simulation options for a model of the auditory periphery. J Acoust Soc Am 135:283–286

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the National Institutes of Health (NIDCD R01DC011580) to ELB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward L. Bartlett.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parthasarathy, A., Lai, J. & Bartlett, E.L. Age-Related Changes in Processing Simultaneous Amplitude Modulated Sounds Assessed Using Envelope Following Responses. JARO 17, 119–132 (2016). https://doi.org/10.1007/s10162-016-0554-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-016-0554-z

Keywords

Navigation