Skip to main content
Log in

Age-Related Changes in the Relationship Between Auditory Brainstem Responses and Envelope-Following Responses

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

Hearing thresholds and wave amplitudes measured using auditory brainstem responses (ABRs) to brief sounds are the predominantly used clinical measures to objectively assess auditory function. However, frequency-following responses (FFRs) to tonal carriers and to the modulation envelope (envelope-following responses or EFRs) to longer and spectro-temporally modulated stimuli are rapidly gaining prominence as a measure of complex sound processing in the brainstem and midbrain. In spite of numerous studies reporting changes in hearing thresholds, ABR wave amplitudes, and the FFRs and EFRs under neurodegenerative conditions, including aging, the relationships between these metrics are not clearly understood. In this study, the relationships between ABR thresholds, ABR wave amplitudes, and EFRs are explored in a rodent model of aging. ABRs to broadband click stimuli and EFRs to sinusoidally amplitude-modulated noise carriers were measured in young (3–6 months) and aged (22–25 months) Fischer-344 rats. ABR thresholds and amplitudes of the different waves as well as phase-locking amplitudes of EFRs were calculated. Age-related differences were observed in all these measures, primarily as increases in ABR thresholds and decreases in ABR wave amplitudes and EFR phase-locking capacity. There were no observed correlations between the ABR thresholds and the ABR wave amplitudes. Significant correlations between the EFR amplitudes and ABR wave amplitudes were observed across a range of modulation frequencies in the young. However, no such significant correlations were found in the aged. The aged click ABR amplitudes were found to be lower than would be predicted using a linear regression model of the young, suggesting altered gain mechanisms in the relationship between ABRs and FFRs with age. These results suggest that ABR thresholds, ABR wave amplitudes, and EFRs measure complementary aspects of overlapping neurophysiological processes and the relationships between these measurements changes asymmetrically with age. Hence, measuring all three metrics provides a more complete assessment of auditory function, especially under pathological conditions like aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

REFERENCES

  • Aiken SJ, Picton TW (2008) Envelope and spectral frequency-following responses to vowel sounds. Hear Res 245:35–47

    Article  PubMed  Google Scholar 

  • Akhoun I, Berger-Vachon C, Collet L (2010) Empirical approach to find the neurophysiological generators of speech auditory brainstem response. Irbm 31:242–256

    Article  Google Scholar 

  • Anderson S, Parbery-Clark A, White-Schwoch T, Kraus N (2012) Aging affects neural precision of speech encoding. J Neurosci 32

  • Anderson S, Parbery-Clark A, White-Schwoch T, Kraus N (2013) Auditory brainstem response to complex sounds predicts self-reported speech-in-noise performance. J Speech Lang Hear Res 56:31–43

    Article  PubMed Central  PubMed  Google Scholar 

  • Backoff PM, Caspary DM (1994) Age-related-changes in auditory brain-stem responses in Fischer-344 rats—effects of rate and intensity. Hear Res 73:163–172

    Article  CAS  PubMed  Google Scholar 

  • Basu M, Krishnan A, Weber-Fox C (2010) Brainstem correlates of temporal auditory processing in children with specific language impairment. Dev Sci 13:77–91

    Article  PubMed  Google Scholar 

  • Boettcher FA (2002) Presbyacusis and the auditory brainstem response. J Speech Lang Hear Res 45:1249–1261

    Article  PubMed  Google Scholar 

  • Boettcher FA, Mills JH, Norton BL (1993) Age-related-changes in auditory-evoked potentials of gerbils.1. Response amplitudes. Hear Res 71:137–145

    Article  CAS  PubMed  Google Scholar 

  • Buchwald JS, Huang CM (1975) Far-field acoustic response—origins in cat. Science 189:382–384

    Article  CAS  PubMed  Google Scholar 

  • Buckiova D, Popelar J, Syka J (2007) Aging cochleas in the F344 rat: morphological and functional changes. Exp Gerontol 42:629–638

    Article  CAS  PubMed  Google Scholar 

  • Burkard RF, Sims D (2001) The human auditory brainstem response to high click rates: aging effects. Am J Audiol 10:53–61

    Article  CAS  PubMed  Google Scholar 

  • Caspary DM, Raza A, Armour BAL, Pippin J, Arneric SP (1990) Immunocytochemical and neurochemical evidence for age-related loss of gaba in the inferior colliculus—implications for neural presbycusis. J Neurosci 10:2363–2372

    CAS  PubMed  Google Scholar 

  • Caspary DM, Palombi PS, Hughes LF (2002) GABAergic inputs shape responses to amplitude modulated stimuli in the inferior colliculus. Hearing Research 168

  • Caspary DM, Ling L, Turner JG, Hughes LF (2008) Inhibitory neurotransmission, plasticity and aging in the mammalian central auditory system. J Exp Biol 211:1781–1791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • CHABA (1988) Speech understanding and aging. J Acoust Soc Am 83:859–895

    Article  Google Scholar 

  • Chandrasekaran B, Kraus N (2010) The scalp-recorded brainstem response to speech: neural origins and plasticity. Psychophysiology 47:236–246

    Article  PubMed Central  PubMed  Google Scholar 

  • Chandrasekaran B, Hornickel J, Skoe E, Nicol T, Kraus N (2009) Context-dependent encoding in the human auditory brainstem relates to hearing speech in noise: implications for developmental dyslexia. Neuron 64:311–319

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen TJ, Chen SS (1991) Generator study of brain-stem auditory evoked-potentials by a radiofrequency lesion method in rats. Exp Brain Res 85:537–542

    Article  CAS  PubMed  Google Scholar 

  • Chen GD, Li MN, Tanaka C, Bielefeld EC, Hu BH, Kermany MH, Salvi R, Henderson D (2009) Aging outer hair cells (OHCs) in the Fischer 344 rat cochlea: function and morphology. Hear Res 248:39–47

    Article  PubMed  Google Scholar 

  • Clinard CG, Tremblay KL (2013) Aging degrades the neural encoding of simple and complex sounds in the human brainstem. J Am Acad Audiol 24:590–599

    Article  PubMed  Google Scholar 

  • Clinard CG, Tremblay KL, Krishnan AR (2010) Aging alters the perception and physiological representation of frequency: evidence from human frequency-following response recordings. Hear Res 264:48–55

    Article  PubMed Central  PubMed  Google Scholar 

  • Cone-Wesson B, Dowell RC, Tomlin D, Rance G, Ming WJ (2002) The auditory steady-state response: comparisons with the auditory brainstem response. J Am Acad Audiol 13:173–187, quiz 225-176

    PubMed  Google Scholar 

  • Cui YL, Holt AG, Lomax CA, Altschuler RA (2007) Deafness associated changes in two-pore domain potassium channels in the rat inferior colliculus. Neuroscience 149:421–433

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cunningham J, Nicol T, Zecker SG, Bradlow A, Kraus N (2001) Neurobiologic responses to speech in noise in children with learning problems: deficits and strategies for improvement. Clin Neurophysiol 112:758–767

    Article  CAS  PubMed  Google Scholar 

  • Dubno JR, Dirks DD, Morgan DE (1984) Effects of age and mild hearing-loss on speech recognition in noise. J Acoust Soc Am 76:87–96

    Article  CAS  PubMed  Google Scholar 

  • Eggermont JJ, Don M (1982) Analysis of click-evoked brain-stem auditory electric potentials using high-pass noise masking and its clinical-application. Ann N Y Acad Sci 388:471–486

    Article  CAS  PubMed  Google Scholar 

  • Firszt JB, Gaggl W, Runge-Samuelson CL, Burg LS, Wackym PA (2003) Auditory sensitivity in children using the auditory steady-state response. In: 9th Symposium on Cochlear Implants in Children, vol. 130, pp 536-540 Washington, DC

  • Frisina DR, Frisina RD (1997) Speech recognition in noise and presbycusis: relations to possible neural mechanisms. Hear Res 106:95–104

    Article  CAS  PubMed  Google Scholar 

  • Gall MD, Salameh TS, Lucas JR (2013) Songbird frequency selectivity and temporal resolution vary with sex and season. Proc R Soc B-Biol Sci 280

  • Gates GA, Mills JH (2005) Presbycusis. Lancet 366:1111–1120

    Article  PubMed  Google Scholar 

  • Hansen CC, Reskenie E (1965) Pathological studies in presbycusis—cochlear and central findings in 12 aged patients. Archives of Otolaryngology 82:115-&

  • Hashimoto I, Ishiyama Y, Yoshimoto T, Nemoto S (1981) Brain-stem auditory-evoked potentials recorded directly from human brain-stem and thalamus. Brain 104:841–859

    Article  CAS  PubMed  Google Scholar 

  • Herdman AT, Stapells DR (1999) Thresholds determined using the monotic and dichotic multiple auditory steady-state response technique in normal-hearing subjects. In: XVIth Biennial Meeting of the International-Evoked-Response-Audiometry-Study-Group, vol. 30. Tromso, Norway, pp 41–49

    Google Scholar 

  • Herdman AT, Lins O, Van Roon P, Stapells DR, Scherg M, Picton TW (2002) Intracerebral sources of human auditory steady-state responses. Brain Topogr 15:69–86

    Article  PubMed  Google Scholar 

  • Hood LJ (1990) Update on frequency specificity of AEP measurements. J Am Acad Audiol 1:125–129

    CAS  PubMed  Google Scholar 

  • Hughes PCR, Tanner JM, Williams JPG (1978) Longitudinal radiographic study of growth of rat skull. J Anat 127:83–91

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hunter KP, Willott JF (1987) Aging and the auditory brain-stem response in mice with severe or minimal presbycusis. Hear Res 30:207–218

    Article  CAS  PubMed  Google Scholar 

  • Jerger J, Hall J (1980) Effects of age and sex on auditory brain-stem response. Arch Otolaryngol Head Neck Surg 106:387–391

    Article  CAS  Google Scholar 

  • Johnson TA, Brown CJ (2005) Threshold prediction using the auditory steady-state response and the tone burst auditory brain stem response: a within-subject comparison. Ear Hear 26:559–576

    Article  PubMed  Google Scholar 

  • Joris PX, Schreiner CE, Rees A (2004) Neural processing of amplitude-modulated sounds. Physiol Rev 84:541–577

    Article  CAS  PubMed  Google Scholar 

  • Kharkovets T, Hardelin JP, Safieddine S, Schweizer M, El-Amraoui A, Petit C, Jentsch TJ (2000) KCNQ4, a K+ channel mutated in a form of dominant deafness, is expressed in the inner ear and the central auditory pathway. Proc Natl Acad Sci U S A 97:4333–4338

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Khouri L, Lesica NA, Grothe B (2011) Impaired auditory temporal selectivity in the inferior colliculus of aged Mongolian gerbils. J Neurosci 31:9958–9970

    Article  CAS  PubMed  Google Scholar 

  • Kiren T, Aoyagi M, Furuse H, Koike Y (1994) An experimental-study on the generator of amplitude-modulation following response. Acta Otolaryngol 28–33

  • Konrad-Martin D, Dille MF, McMillan G, Griest S, McDermott D, Fausti SA, Austin DF (2012) Age-related changes in the auditory brainstem response. J Am Acad Audiol 23:18–35

    PubMed  Google Scholar 

  • Kotak VC, Sanes DH (2003) Gain adjustment of inhibitory synapses in the auditory system. Biol Cybern 89:363–370

    Article  PubMed  Google Scholar 

  • Kotak VC, Ter-Mikaelian M, Lee FA, Sanes DH (2003) Deafening alters the balance between excitation and inhibition in the auditory cortex. Society for Neuroscience Abstract Viewer and Itinerary Planner 2003:Abstract No. 181.182-Abstract No. 181.182

  • Krishnan A (1999) Human frequency-following responses to two-tone approximations of steady-state vowels. Audiol Neuro Otol 4:95–103

    Article  CAS  Google Scholar 

  • Krishnan A (2002) Human frequency-following responses: representation of steady-state synthetic vowels. Hear Res 166:192–201

    Article  PubMed  Google Scholar 

  • Krishnan A, Xu YS, Gandour JT, Cariani PA (2004) Human frequency-following response: representation of pitch contours in Chinese tones. Hear Res 189:1–12

    Article  PubMed  Google Scholar 

  • Krishnan A, Bidelman GM, Gandour JT (2010) Neural representation of pitch salience in the human brainstem revealed by psychophysical and electrophysiological indices. Hear Res 268:60–66

    Article  PubMed Central  PubMed  Google Scholar 

  • Krizman J, Skoe E, Kraus N (2012) Sex differences in auditory subcortical function. Clin Neurophysiol 123:590–597

    Article  PubMed  Google Scholar 

  • Kujawa SG, Liberman MC (2009) Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci 29:14077–14085

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kuwada S, Anderson JS, Batra R, Fitzpatrick DC, Teissier N, D’Angelo WR (2002) Sources of the scalp-recorded amplitude-modulation following response. J Am Acad Audiol 13:188–204

    PubMed  Google Scholar 

  • LeBeau FEN, Rees A, Malmierca MS (1996) Contribution of GABA- and glycine-mediated inhibition to the monaural temporal response properties of neurons in the inferior colliculus. J Neurophysiol 75:902–919

    CAS  Google Scholar 

  • LeBeau FEN, Malmierca MS, Rees A (2001) Iontophoresis in vivo demonstrates a key role for GABA(A) and glycinergic inhibition in shaping frequency response areas in the inferior colliculus of guinea pig. J Neurosci 21:7303–7312

    CAS  PubMed  Google Scholar 

  • Lev A, Sohmer H (1972) Sources of averaged neural responses recorded in animal and human subjects during cochlear audiometry (electro-cochleogram). Archiv Fur Klinische Und Experimentelle Ohren-Nasen-Und Kehlkopfheilkunde 201:79-&

  • Lin YH, Ho HC, Wu HP (2009) Comparison of auditory steady-state responses and auditory brainstem responses in audiometric assessment of adults with sensorineural hearing loss. Auris Nasus Larynx 36:140–145

    Article  PubMed  Google Scholar 

  • Liu SQJ, Kaczmarek LK (2005) Aminoglycosides block the Kv3.1 potassium channel and reduce the ability of inferior colliculus neurons to fire at high frequencies. J Neurobiol 62:439–452

    Article  CAS  PubMed  Google Scholar 

  • Mardia KV, Kent JT, Bibby JM (1979) Multivariate analysis. Academic, London

    Google Scholar 

  • Marino DJ (2012) Age-specific absolute and relative organ weight distributions for Fischer 344 rats. J Toxicol Environ Health-Part A-Curr Issue 75:1484–1516

    Article  CAS  Google Scholar 

  • Mazelova J, Popelar J, Syka J (2002) Auditory function in presbycusis: peripheral vs. central changes. In: 6th International Symposium on the Neurobiology and Neuroendocrinology of Aging, pp 87-94 Bregenz, Austria: Pergamon-Elsevier Science Ltd

  • McAlpine D, Palmer AR (2002) Blocking GABAergic inhibition increases sensitivity to sound motion cues in the inferior colliculus. J Neurosci 22:1443–1453

    CAS  PubMed  Google Scholar 

  • McAnally KI, Stein JF (1997) Scalp potentials evoked by amplitude-modulated tones in dyslexia. J Speech Lang Hear Res 40:939–945

    CAS  PubMed  Google Scholar 

  • Mendelson JR, Ricketts C (2001) Age-related temporal processing speed deterioration in auditory cortex. Hear Res 158:84–94

    Article  CAS  PubMed  Google Scholar 

  • Miko IJ, Sanes DH (2009) Transient gain adjustment in the inferior colliculus is serotonin- and calcium-dependent. Hear Res 251:39–50

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mills JH, Schmiedt RA, Kulish LF (1990) Age-related-changes in auditory potentials of Mongolian gerbil. Hear Res 46:201–210

    Article  CAS  PubMed  Google Scholar 

  • Mills JH, Schmiedt RA, Schulte BA, Dubno JR (2006) Age-related hearing loss: a loss of voltage, not hair cells. Semin Hear 27:228–236

    Article  Google Scholar 

  • Palombi PS, Caspary DM (1996) Physiology of the young adult Fischer 344 rat inferior colliculus: responses to contralateral monaural stimuli. Hear Res 100:41–58

    Article  CAS  PubMed  Google Scholar 

  • Palombi PS, Backoff PM, Caspary DM (2001) Responses of young and aged rat inferior colliculus neurons to sinusoidally amplitude modulated stimuli. Hear Res 153:174–180

    Article  Google Scholar 

  • Parbery-Clark A, Strait DL, Kraus N (2011) Context-dependent encoding in the auditory brainstem subserves enhanced speech-in-noise perception in musicians. Neuropsychologia 49:3338–3345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Parthasarathy A, Bartlett EL (2011) Age-related auditory deficits in temporal processing in f-344 rats. Neuroscience 192:619–630

    Article  CAS  PubMed  Google Scholar 

  • Parthasarathy A, Bartlett E (2012) Two-channel recording of auditory-evoked potentials to detect age-related deficits in temporal processing. Hear Res 289:52–62

    Article  PubMed Central  PubMed  Google Scholar 

  • Parthasarathy A, Cunningham PA, Bartlett EL (2010) Age-related differences in auditory processing as assessed by amplitude-modulation following responses in quiet and in noise. Front Aging Neurosci 2:152

    Article  PubMed Central  PubMed  Google Scholar 

  • Picton TW, Hillyard SA, Krausz HI, Galambos R (1974) Human auditory evoked-potentials.1. Evaluation of components. Electroencephalogr Clin Neurophysiol 36:179–190

    Article  CAS  PubMed  Google Scholar 

  • Picton TW, Stapells DR, Campbell KB (1981) Auditory evoked potentials from the human cochlea and brainstem. J Otolaryngol Suppl 9:1–41

    CAS  PubMed  Google Scholar 

  • Picton TW, John MS, Dimitrijevic A, Purcell D (2003) Human auditory steady-state responses. Int J Audiol 42:177–219

    Article  PubMed  Google Scholar 

  • Poo MM (2001) Neurotrophins as synaptic modulators. Nat Rev Neurosci 2:24–32

    Article  CAS  PubMed  Google Scholar 

  • Popelar J, Groh D, Pelanova J, Canlon B, Syka J (2006) Age-related changes in cochlear and brainstem auditory functions in Fischer 344 rats. Neurobiol Aging 27:490–500

    Article  PubMed  Google Scholar 

  • Rabang CF, Parthasarathy A, Venkataraman Y, Fisher ZL, Gardner SM, Bartlett EL (2012) A computational model of inferior colliculus responses to amplitude modulated sounds in young and aged rats. Front Neural Circuits 6

  • Rance G, Roper R, Symons L, Moody L-J, Poulis C, Dourlay M, Kelly T (2005) Hearing threshold estimation in infants using auditory steady-state responses. J Am Acad Audiol 16:291–300

    Article  PubMed  Google Scholar 

  • Rao CR (1973) Linear statistical inference. John Wiley & Sons, New York

    Google Scholar 

  • Rowe MJ (1978) Normal variability of brain-stem auditory evoked-response in young and old adult subjects. Electroencephalogr Clin Neurophysiol 44:459–470

    Article  PubMed  Google Scholar 

  • Rowe MJ (1981) The brain-stem auditory evoked-response in neurological disease—a review. Ear Hear 2:41–51

    Article  PubMed  Google Scholar 

  • Ruggles D, Bharadwaj H, Shinn-Cunningham BG (2011) Normal hearing is not enough to guarantee robust encoding of suprathreshold features important in everyday communication. Proc Natl Acad Sci U S A 108:15516–15521

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Russo N, Zecker S, Trommer B, Chen J, Kraus N (2009) Effects of background noise on cortical encoding of speech in autism spectrum disorders. J Autism Dev Disord 39:1185–1196

    Article  PubMed Central  PubMed  Google Scholar 

  • Sand T (1991) BAEP amplitudes and amplitude ratios—relation to click polarity, rate, age and sex. Electroencephalogr Clin Neurophysiol 78:291–296

    Article  CAS  PubMed  Google Scholar 

  • Sanes DH, Bao S (2009) Tuning up the developing auditory CNS. Curr Opin Neurobiol 19:188–199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schatteman TA, Hughes LF, Caspary DM (2008) Aged-related loss of temporal processing: altered responses to amplitude modulated tones in rat dorsal cochlear nucleus. Neuroscience 154:329–337

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Scherf F, Brokx J, Wuyts FL, Van de Heyning PH (2006) The ASSR: clinical application in normal-hearing and hearing-impaired infants and adults, comparison with the click-evoked ABR and pure-tone audiometry. Int J Audiol 45:281–286

    Article  PubMed  Google Scholar 

  • Schneider BA, Pichorafuller MK, Kowalchuk D, Lamb M (1994) Gap detection and the precedence effect in young and old adults. J Acoust Soc Am 95:980–991

    Article  CAS  PubMed  Google Scholar 

  • Sergeyenko Y, Lall K, Liberman MC, Kujawa SG (2013) Age-related cochlear synaptopathy: an early-onset contributor to auditory functional decline. J Neurosci 33:13686–13694

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Snell KB, Frisina DR (2000) Relationships among age-related differences in gap detection and word recognition. J Acoust Soc Am 107:1615–1626

    Article  CAS  PubMed  Google Scholar 

  • Starr A, Picton TW, Sininger Y, Hood LJ, Berlin CI (1996) Auditory neuropathy. Brain 119:741–753

    Article  PubMed  Google Scholar 

  • Suta D, Rybalko N, Pelanova J, Popelar J, Syka J (2011) Age-related changes in auditory temporal processing in the rat. Exp Gerontol 46:739–746

    Article  PubMed  Google Scholar 

  • Swaminathan J, Krishnan A, Gandour JT, Xu Y (2008) Applications of static and dynamic iterated rippled noise to evaluate pitch encoding in the human auditory brainstem. IEEE Trans Biomed Eng 55:281–287

    Article  PubMed  Google Scholar 

  • Syka J (2010) The Fischer 344 rat as a model of presbycusis. Hear Res 264:70–78

    Article  PubMed  Google Scholar 

  • Ter-Mikaelian M, Sanes DH, Semple MN (2007) Transformation of temporal properties between auditory midbrain and cortex in the awake Mongolian gerbil. J Neurosci 27:6091–6102

    Article  CAS  PubMed  Google Scholar 

  • Thompson DC, McPhillips H, Davis RL, Lieu TL, Homer CJ, Helfand M (2001) Universal newborn hearing screening—summary of evidence. JAMA-J Am Med Assoc 286:2000–2010

    Article  CAS  Google Scholar 

  • Tremblay KL, Piskosz M, Souza P (2002) Aging alters the neural representation of speech cues. Neuroreport 13:1865–1870

    Article  PubMed  Google Scholar 

  • Tremblay KL, Piskosz M, Souza P (2003) Effects of age and age-related hearing loss on the neural representation of speech cues. Clin Neurophysiol 114:1332–1343

    Article  PubMed  Google Scholar 

  • Turrigiano GG (2008) The self-tuning neuron: synaptic scaling of excitatory synapses. Cell 135:422–435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Turrigiano G (2012) Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function. Cold Spring Harb Perspect Biol 4:17

    Article  Google Scholar 

  • Vale C, Schoorlemmer J, Sanes DH (2003) Deafness disrupts chloride transporter function and inhibitory synaptic transmission. J Neurosci 23:7516–7524

    CAS  PubMed  Google Scholar 

  • Walton JP (2010) Timing is everything: temporal processing deficits in the aged auditory brainstem. Hear Res 264:63–69

    Article  PubMed  Google Scholar 

  • Walton JP, Frisina RD, O’Neill WE (1998) Age-related alteration in processing of temporal sound features in the auditory midbrain of the CBA mouse. J Neurosci 18:2764–2776

    CAS  PubMed  Google Scholar 

  • Walton JP, Simon H, Frisina RD (2002) Age-related alterations in the neural coding of envelope periodicities. J Neurophysiol 88:565–578

    PubMed  Google Scholar 

  • Wang J, Caspary D, Salvi RJ (2000) GABA-A antagonist causes dramatic expansion of tuning in primary auditory cortex. Neuroreport 11:1137–1140

    Article  CAS  PubMed  Google Scholar 

  • Wang JA, McFadden SL, Caspary D, Salvi R (2002) Gamma-aminobutyric acid circuits shape response properties of auditory cortex neurons. Brain Research 944

  • Wright HV, Kjaer I, Asling CW (1966) Roentgen cephalometric studies on skull development in rats. 2. Normal and hypophysectomized males sex differences. American Journal of Physical Anthropology 25:103-&

  • Zhang HM, Kelly JB (2003) Glutamatergic and GABAergic regulation of neural responses in inferior colliculus to amplitude-modulated sounds. J Neurophysiol 90:477–490

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Institutes of Health (NIDCD R01DC011580) and the American Federation for Aging Research (AFAR).

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward L. Bartlett.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parthasarathy, A., Datta, J., Torres, J.A.L. et al. Age-Related Changes in the Relationship Between Auditory Brainstem Responses and Envelope-Following Responses. JARO 15, 649–661 (2014). https://doi.org/10.1007/s10162-014-0460-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-014-0460-1

Keywords

Navigation