Skip to main content
Log in

Telluric Acid Ameliorates Endotoxemic Kidney Injury in Mice: Involvement of TLR4, Nrf2, and PI3K/Akt Signaling Pathways

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Being one of the most abundant trace elements in the human body, the therapeutic potential of tellurium-based compounds has been a target of interest. Recent reports denoted their redox-modulating and anti-inflammatory activities in experimental endotoxemia. However, their potential nephroprotective effect against endotoxemic kidney injury is yet to be elucidated. This study investigated the possible renoprotective effect of telluric acid (TEL) against lipopolysaccharide (LPS)-induced acute kidney injury (AKI) in mice, targeting toll-like receptor 4 (TLR4), phosphoinositide 3-kinase (PI3K)/Akt, and nuclear factor-erythroid 2-related factor-2 (Nrf2) pathways as possible mechanistic contributors to TEL’s effect. AKI was induced by LPS (2 mg/kg). TEL (60 μg/kg; i.p.) was administered once daily for seven consecutive days before LPS injection. Pretreatment with TEL alleviated LPS-induced AKI as evidenced by the hampered serum levels of creatinine and cystatin C. TEL also opposed LPS-induced elevation in renal kidney injury molecule-1, neutrophil gelatinase-associated lipocalin, nuclear factor-kappa B p65, interleukin-1β, and thiobarbituric acid-reactive substance contents. This was accompanied by a replenishment of renal glutathione, transcriptional upregulation of Nrf2, enhancement of heme oxygenase-1 activity, and a marked upregulation of phospho-PI3K and phospho-Akt protein expressions. Histopathological findings corroborated with the amendment of biochemical parameters. In view of these findings, we may conclude that TEL pretreatment purveyed novel nephroprotective effects against endotoxemic kidney injury, which might be partly attributed to the modulation of TLR4, PI3K/Akt, and Nrf2 signaling pathways and may hence provide a valuable asset for the management of endotoxemic renal complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shigehiko, Uchino, John A. Kellum, Rinaldo Bellomo, Gordon S. Doig, Hiroshi Morimatsu, Stanislao Morgera, Miet Schetz, et al. 2005. Acute renal failure in critically ill patients: A multinational, multicenter study. JAMA 294: 813–818. doi:10.1001/jama.294.7.813.

    Article  Google Scholar 

  2. Mårtensson, Johan, and Rinaldo Bellomo. 2016. Pathophysiology of septic acute kidney injury. Contributions to Nephrology 187: 36–46. doi:10.1159/000442363.

    PubMed  Google Scholar 

  3. Meyer-Schwesinger, Catherine, Silke Dehde, Claudia von Ruffer, Stefan Gatzemeier, Philipp Klug, Ulrich O. Wenzel, Rolf A.K. Stahl, Friedrich Thaiss, and Tobias N. Meyer. 2009. Rho kinase inhibition attenuates LPS-induced renal failure in mice in part by attenuation of NF-kappaB p65 signaling. American Journal of Physiology. Renal Physiology 296: F1088–F1099. doi:10.1152/ajprenal.90746.2008.

    Article  CAS  PubMed  Google Scholar 

  4. Mehta, Ravindra L., and Glenn M. Chertow. 2003. Acute renal failure definitions and classification: time for change? Journal of the American Society of Nephrology 14: 2178–2187. doi:10.1097/01.ASN.0000079042.13465.1A.

    Article  PubMed  Google Scholar 

  5. Herget-Rosenthal, Stefan, Günter Marggraf, Johannes Hüsing, Frauke Göring, Frank Pietruck, Onno Janssen, Thomas Philipp, and Andreas Kribben. 2004. Early detection of acute renal failure by serum cystatin C. Kidney International 66: 1115–1122. doi:10.1111/j.1523-1755.2004.00861.x.

    Article  CAS  PubMed  Google Scholar 

  6. Mori, Kiyoshi, H. Thomas Lee, Dana Rapoport, Ian R. Drexler, Kirk Foster, Jun Yang, Kai M. Schmidt-Ott, et al. 2005. Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury. Journal of Clinical Investigation 115: 610–621. doi:10.1172/JCI200523056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Miyanishi, Masanori, Kazutoshi Tada, Masato Koike, Yasuo Uchiyama, Toshio Kitamura, and Shigekazu Nagata. 2007. Identification of Tim4 as a phosphatidylserine receptor. Nature 450: 435–439. doi:10.1038/nature06307.

    Article  CAS  PubMed  Google Scholar 

  8. Miyake, Kensuke. 2007. Innate immune sensing of pathogens and danger signals by cell surface Toll-like receptors. Seminars in Immunology 19: 3–10. doi:10.1016/j.smim.2006.12.002.

    Article  CAS  PubMed  Google Scholar 

  9. O’Neill, Luke A.J., and Andrew G. Bowie. 2007. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nature Reviews. Immunology 7: 353–364. doi:10.1038/nri2079.

    Article  PubMed  Google Scholar 

  10. Lu, Yong-Chen, Wen-Chen Yeh, and Pamela S. Ohashi. 2008. LPS/TLR4 signal transduction pathway. Cytokine 42: 145–151. doi:10.1016/j.cyto.2008.01.006.

    Article  CAS  PubMed  Google Scholar 

  11. Ye, Han-Yang, Jian Jin, Ling-Wei Jin, Yan Chen, Zhi-Hong Zhou, and Zhan-Yuan Li. 2017. Chlorogenic acid attenuates lipopolysaccharide-induced acute kidney injury by inhibiting TLR4/NF-κB signal pathway. Inflammation 40: 523–529. doi:10.1007/s10753-016-0498-9.

    Article  CAS  PubMed  Google Scholar 

  12. Zarjou, Abolfazl, and Anupam Agarwal. 2011. Sepsis and acute kidney injury. Journal of the American Society of Nephrology 22: 999–1006. doi:10.1681/ASN.2010050484.

    Article  PubMed  Google Scholar 

  13. Nguyen, Truyen, Paul Nioi, and Cecil B. Pickett. 2009. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. Journal of Biological Chemistry 284: 13291–13295. doi:10.1074/jbc.R900010200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Surh, Young Joon, Joydeb Kumar Kundu, and Hye Kyung Na. 2008. Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals. Planta Medica 74: 1526–1539. doi:10.1055/s-0028-1088302.

    Article  CAS  PubMed  Google Scholar 

  15. Cao, Zhijuan, Danyang Ren, Tuanzhu Ha, Li Liu, Xiaohui Wang, John Kalbfleisch, Xiang Gao, Race Kao, David Williams, and Chuanfu Li. 2013. CpG-ODN, the TLR9 agonist, attenuates myocardial ischemia/reperfusion injury: involving activation of PI3K/Akt signaling. Biochimica et Biophysica Acta - Molecular Basis of Disease 1832: 96–104. doi:10.1016/j.bbadis.2012.08.008.

    Article  CAS  Google Scholar 

  16. Laird, Michelle H.W., Sang Hoon Rhee, Darren J. Perkins, Andrei E. Medvedev, Wenji Piao, Matthew J. Fenton, and Stefanie N. Vogel. 2009. TLR4/MyD88/PI3K interactions regulate TLR4 signaling. Journal of Leukocyte Biology 85: 966–977. doi:10.1189/jlb.1208763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Avila, Daiana Silva, Alexandre Benedetto, Catherine Au, Flávia Manarin, Keith Erikson, Felix Antunes Soares, João Batista Teixeira Rocha, and Michael Aschner. 2012. Organotellurium and organoselenium compounds attenuate Mn-induced toxicity in Caenorhabditis elegans by preventing oxidative stress. Free Radical Biology and Medicine 52: 1903–1910. doi:10.1016/j.freeradbiomed.2012.02.044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Day, Brian J. 2009. Catalase and glutathione peroxidase mimics. Biochemical Pharmacology 77: 285–296. doi:10.1016/j.bcp.2008.09.029.

    Article  CAS  PubMed  Google Scholar 

  19. Halpert, Gilad, Tom Eitan, Elena Voronov, Ron N. Apte, Lea Rath-Wolfson, Michael Albeck, Yona Kalechman, and Benjamin Sredni. 2014. Multifunctional activity of a small tellurium redox immunomodulator compound, AS101, on dextran sodium sulfate-induced murine colitis. Journal of Biological Chemistry 289. American Society for Biochemistry and Molecular Biology: 17215–17227. doi:10.1074/jbc.M113.536664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Du, Peng, Nathaniel Edward Bennett Saidu, Johanna Intemann, Claus Jacob, and Mathias Montenarh. 2014. A new tellurium-containing amphiphilic molecule induces apoptosis in HCT116 colon cancer cells. Biochimica et Biophysica Acta - General Subjects 1840: 1808–1816. doi:10.1016/j.bbagen.2014.02.003.

    Article  CAS  Google Scholar 

  21. Brodsky, Miri, Gilad Halpert, Michael Albeck, and Benjamin Sredni. 2010. The anti-inflammatory effects of the tellurium redox modulating compound, AS101, are associated with regulation of NFkappaB signaling pathway and nitric oxide induction in macrophages. Journal of inflammation (London, England) 7: 3. doi:10.1186/1476-9255-7-3.

    Article  Google Scholar 

  22. Brodsky, Miri, Shira Hirsh, Michael Albeck, and Benjamin Sredni. 2009. Resolution of inflammation-related apoptotic processes by the synthetic tellurium compound, AS101 following liver injury. Journal of Hepatology 51. European Association for the Study of the Liver: 491–503. doi:10.1016/j.jhep.2009.04.024.

    Article  CAS  PubMed  Google Scholar 

  23. Pawlinski, Rafal, Brian Pedersen, Bettina Kehrle, William C Aird, Rolf D Frank, Mausumee Guha, and Nigel Mackman. 2003. Regulation of tissue factor and inflammatory mediators by Egr-1 in a mouse endotoxemia model. Blood 101: 3940–3947. doi:10.1182/blood-2002-07-2303.

  24. Gao, Rong, Jiao Chen, Yuxin Hu, Zhenyu Li, Shuxia Wang, Sreerama Shetty, and Fu Jian. 2014. Sirt1 deletion leads to enhanced inflammation and aggravates endotoxin-induced acute kidney injury. PloS One 9: e98909. doi:10.1371/journal.pone.0098909.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Beutler, Ernest, Olga Duron, and Barbara Mikus Kelly. 1963. Improved method for the determination of blood glutathione. The Journal of Laboratory and Clinical Medicine 61: 882–888.

    CAS  PubMed  Google Scholar 

  26. Uchiyama, Mitsuru, and Midori Mihara. 1978. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Analytical Biochemistry 86: 271–278. doi:10.1016/0003-2697(78)90342-1.

    Article  CAS  PubMed  Google Scholar 

  27. Abraham, N.G., J.D. Lutton, and R.D. Levere. 1985. Heme metabolism and erythropoiesis in abnormal iron states: Role of delta-aminolevulinic acid synthase and heme oxygenase. Experimental Hematology 13: 838–843.

    CAS  PubMed  Google Scholar 

  28. Livak, Kenneth J., and Thomas D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and. Methods 25: 402–408. doi:10.1006/meth.2001.1262.

    Article  CAS  PubMed  Google Scholar 

  29. Hu, Jun, and Jun Liu. 2016. Licochalcone A attenuates lipopolysaccharide-induced acute kidney injury by inhibiting NF-κB activation. Inflammation 39: 569–574. doi:10.1007/s10753-015-0281-3.

    Article  CAS  PubMed  Google Scholar 

  30. Schrier, Robert W., and Wei Wang. 2004. Acute renal failure and sepsis. New England Journal of Medicine 351: 159–169. doi:10.1056/NEJMra032401.

    Article  CAS  PubMed  Google Scholar 

  31. Wu, Liping, Neriman Gokden, and Philip R. Mayeux. 2007. Evidence for the role of reactive nitrogen species in polymicrobial sepsis-induced renal peritubular capillary dysfunction and tubular injury. Journal of the American Society of Nephrology 18. American Society of Nephrology: 1807–1815. doi:10.1681/ASN.2006121402.

    Article  CAS  PubMed  Google Scholar 

  32. Waltz, Paul, Evie Carchman, Hernando Gomez, and Brian Zuckerbraun. 2016. Sepsis results in an altered renal metabolic and osmolyte profile. Journal of Surgical Research 202. Elsevier Inc: 8–12. doi:10.1016/j.jss.2015.12.011.

    Article  CAS  PubMed  Google Scholar 

  33. Yu, Chen, Dong Qi, Ju-Feng Sun, Peng Li, and Hua-Ying Fan. 2015. Rhein prevents endotoxin-induced acute kidney injury by inhibiting NF-κB activities. Scientific Reports 5. Nature Publishing Group: 11822c. doi:10.1038/srep11822.

    Article  Google Scholar 

  34. Han, Won K., Veronique Bailly, Rekha Abichandani, Ravi Thadhani, and Joseph V. Bonventre. 2002. Kidney injury molecule-1 (KIM-1): A novel biomarker for human renal proximal tubule injury. Kidney International 62: 237–244. doi:10.1046/j.1523-1755.2002.00433.x.

    Article  CAS  PubMed  Google Scholar 

  35. Bailly, Véronique, Zhiwei Zhang, Werner Meier, Richard Cate, Michele Sanicola, and Joseph V. Bonventre. 2002. Shedding of kidney injury molecule-1, a putative adhesion protein involved in renal regeneration. Journal of Biological Chemistry 277: 39739–39748. doi:10.1074/jbc.M200562200.

    Article  CAS  PubMed  Google Scholar 

  36. Han, Mei, Ying Li, Maodong Liu, Yingmin Li, and Bin Cong. 2012. Renal neutrophil gelatinase associated lipocalin expression in lipopolysaccharide-induced acute kidney injury in the rat. BMC Nephrology 13: 25. doi:10.1186/1471-2369-13-25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ware, Lorraine B., Ali C.M. Johnson, and Richard A. Zager. 2011. Renal cortical albumin gene induction and urinary albumin excretion in response to acute kidney injury. American Journal of Physiology. Renal Physiology 300. American Physiological Society: F628–F638. doi:10.1152/ajprenal.00654.2010.

    Article  CAS  PubMed  Google Scholar 

  38. Van Der Poll, Tom, and Joost C.M. Meijers. 2010. Systemic inflammatory response syndrome and compensatory anti-inflammatory response syndrome in sepsis. Journal of Innate Immunity 2: 379–380. doi:10.1159/000318190.

    Article  PubMed  Google Scholar 

  39. Sebai, Hichem, Mossadok Ben-Attia, Mamane Sani, Ezzedine Aouani, and Néziha Ghanem-Boughanmi. 2008. Protective effect of resveratrol on acute endotoxemia-induced nephrotoxicity in rat through nitric oxide independent mechanism. Free Radical Research 42: 913–920. doi:10.1080/10715760802555577.

    Article  CAS  PubMed  Google Scholar 

  40. Bhattacharyya, Jharna, Sabyasachi Biswas, and Asoke G. Datta. 2004. Mode of action of endotoxin: role of free radicals and antioxidants. Current Medicinal Chemistry 11: 359–368. doi:10.2174/0929867043456098.

    Article  CAS  PubMed  Google Scholar 

  41. Yin, Shasha, and Wangsen Cao. 2015. TLR signaling induces Nrf2 pathway activation through p62-triggered Keap1 degradation. Molecular and Cellular Biology 35: 2673–2683. doi:10.1128/MCB.00105-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Takahashi, Toru, Hiroko Shimizu, Hiroshi Morimatsu, Kyoichiro Maeshima, Kazuyoshi Inoue, Reiko Akagi, Masaki Matsumi, Hiroshi Katayama, and Kiyoshi Morita. 2009. Heme oxygenase-1 is an essential cytoprotective component in oxidative tissue injury induced by hemorrhagic shock. Journal of Clinical Biochemistry and Nutrition 44. The Society for Free Radical Research Japan: 28–40. doi:10.3164/jcbn.08-210-HO.

    Article  CAS  PubMed  Google Scholar 

  43. Stocker, R., Y. Yamamoto, A.F. McDonagh, A.N. Glazer, and B.N. Ames. 1987. Bilirubin is an antioxidant of possible physiological importance. Science (New York, N.Y.) 235: 1043–1046. doi:10.1126/science.3029864.

    Article  CAS  Google Scholar 

  44. Otterbein, Leo E., Fritz H. Bach, Jawed Alam, Miguel Soares, Hong Tao Lu, Mark Wysk, Roger J. Davis, Richard A. Flavell, and Augustine M.K. Choi. 2000. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nature Medicine 6: 422–428. doi:10.1038/74680.

    Article  CAS  PubMed  Google Scholar 

  45. Hassan, Waseem, Mohammad Ibrahim, and Joao Batista Teixeira Rocha. 2009. Towards the mechanism and comparative effect of diphenyl diselenide, diphenyl ditelluride and ebselen under various pathophysiological conditions in rat’s kidney preparation. Chemico-Biological Interactions 182: 52–58. doi:10.1016/j.cbi.2009.06.023.

    Article  CAS  PubMed  Google Scholar 

  46. Nguyen, Truyen, H.C. Huang, and Cecil B. Pickett. 2000. Transcriptional regulation of the antioxidant response element. Activation by Nrf2 and repression by MafK. Journal of Biological Chemistry 275: 15466–15473. doi:10.1074/jbc.M000361200.

    Article  CAS  PubMed  Google Scholar 

  47. Davis, W., Z. Ronai, and K.D. Tew. 2001. Cellular thiols and reactive oxygen species in drug-induced apoptosis. The Journal of Pharmacology and Experimental Therapeutics 296: 1–6.

    CAS  PubMed  Google Scholar 

  48. Rittner, Heike L., Verena Hafner, Piotr A. Klimiuk, Luke I. Szweda, Jörg J. Goronzy, and Cornelia M. Weyand. 1999. Aldose reductase functions as a detoxification system for lipid peroxidation products in vasculitis. Journal of Clinical Investigation 103: 1007–1013. doi:10.1172/JCI4711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kang, Eun Sil, Im Sun Woo, Hyo Jung Kim, So Young Eun, Kyung Shin Paek, Hye Jung Kim, Ki Churl Chang, et al. 2007. Up-regulation of aldose reductase expression mediated by phosphatidylinositol 3-kinase/Akt and Nrf2 is involved in the protective effect of curcumin against oxidative damage. Free Radical Biology and Medicine 43: 535–545. doi:10.1016/j.freeradbiomed.2007.05.006.

    Article  CAS  PubMed  Google Scholar 

  50. Ávila, Daiana Silva, Priscila Gubert, Aline Palma, Dirleise Colle, Diego Alves, Cristina Wayne Nogueira, João Batista Teixeira Rocha, and Félix Alexandre Antunes Soares. 2008. An organotellurium compound with antioxidant activity against excitotoxic agents without neurotoxic effects in brain of rats. Brain Research Bulletin 76: 114–123. doi:10.1016/j.brainresbull.2007.12.008.

    Article  PubMed  Google Scholar 

  51. Monick, M.M., A.B. Carter, P.K. Robeff, D.M. Flaherty, M.W. Peterson, and G.W. Hunninghake. 2001. Lipopolysaccharide activates Akt in human alveolar macrophages resulting in nuclear accumulation and transcriptional activity of beta-catenin. Journal of Immunology (Baltimore, Md. : 1950) 166: 4713–4720. doi:10.4049/jimmunol.166.7.4713.

    Article  CAS  Google Scholar 

  52. Akira, Shizuo, and Katuaki Hoshino. 2003. Myeloid differentiation factor 88-dependent and -independent pathways in toll-like receptor signaling. The Journal of Infectious Diseases 187 (Suppl 2. Oxford University Press): S356–S363. doi:10.1086/374749.

    Article  CAS  PubMed  Google Scholar 

  53. Yang, Liang, Xiangyu Cai, Jie Liu, Zhe Jia, Jinjin Jiao, Jincai Zhang, Changlin Li, Jing Li, and Xiang D. Tang. 2013. CpG-ODN attenuates pathological cardiac hypertrophy and heart failure by activation of PI3Kα-Akt signaling. Edited by Andreas Zirlik. PLoS ONE 8: e62373. doi:10.1371/journal.pone.0062373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Díaz-Guerra, M.J., A. Castrillo, P. Martín-Sanz, and L. Boscá. 1999. Negative regulation by phosphatidylinositol 3-kinase of inducible nitric oxide synthase expression in macrophages. Journal of Immunology (Baltimore, Md. : 1950) 162: 6184–6190.

    Google Scholar 

  55. Guha, Mausumee, and Nigel Mackman. 2002. The phosphatidylinositol 3-kinase-Akt pathway limits lipopolysaccharide activation of signaling pathways and expression of inflammatory mediators in human monocytic cells. Journal of Biological Chemistry 277: 32124–32132. doi:10.1074/jbc.M203298200.

    Article  CAS  PubMed  Google Scholar 

  56. Ojaniemi, Marja, Virpi Glumoff, Kirsi Harju, Mari Liljeroos, Kristiina Vuori, and Mikko Hallman. 2003. Phosphatidylinositol 3-kinase is involved in Toll-like receptor 4-mediated cytokine expression in mouse macrophages. European Journal of Immunology 33: 597–605. doi:10.1002/eji.200323376.

    Article  CAS  PubMed  Google Scholar 

  57. Loiarro, Maria, Claudio Sette, Grazia Gallo, Andrea Ciacci, Nicola Fantó, Domenico Mastroianni, Paolo Carminati, and Vito Ruggiero. 2005. Peptide-mediated interference of TIR domain dimerization in MyD88 inhibits interleukin-1-dependent activation of NF-κB. Journal of Biological Chemistry 280: 15809–15814. doi:10.1074/jbc.C400613200.

    Article  CAS  PubMed  Google Scholar 

  58. Kagan, Jonathan C., and Ruslan Medzhitov. 2006. Phosphoinositide-mediated adaptor recruitment controls Toll-like receptor signaling. Cell 125: 943–955. doi:10.1016/j.cell.2006.03.047.

    Article  CAS  PubMed  Google Scholar 

  59. Hawkins, P.T., T.R. Jackson, and L.R. Stephens. 1992. Platelet-derived growth factor stimulates synthesis of PtdIns(3,4,5)P3 by activating a PtdIns(4,5)P2 3-OH kinase. Nature 358. Nature Publishing Group: 157–159. doi:10.1038/358157a0.

    Article  CAS  PubMed  Google Scholar 

  60. Hamdulay, Shahir S., Bufei Wang, Graeme M. Birdsey, Faisal Ali, Odile Dumont, Paul C. Evans, Dorian O. Haskard, Caroline P. Wheeler-Jones, and Justin C. Mason. 2010. Celecoxib activates PI-3K/Akt and mitochondrial redox signaling to enhance heme oxygenase-1-mediated anti-inflammatory activity in vascular endothelium. Free Radical Biology and Medicine 48: 1013–1023. doi:10.1016/j.freeradbiomed.2010.01.017.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed F. Mohamed.

Ethics declarations

All animal experiments were performed in accordance with the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH Publication No. 85-23, revised 1996).

Conflict of Interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, A.F., Safar, M.M., Zaki, H.F. et al. Telluric Acid Ameliorates Endotoxemic Kidney Injury in Mice: Involvement of TLR4, Nrf2, and PI3K/Akt Signaling Pathways. Inflammation 40, 1742–1752 (2017). https://doi.org/10.1007/s10753-017-0617-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-017-0617-2

KEY WORDS

Navigation