Skip to main content

Advertisement

Log in

Rac1 activation in oral squamous cell carcinoma as a predictive factor associated with lymph node metastasis

  • Original Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Objectives

Secondary lymph node metastasis (SLNM) indicates a poor prognosis, and limiting it can improve the survival rate in early-stage tongue squamous cell carcinoma (TSCC). Many factors have been identified as predictors of SLNM; however, there is no unified view. Ras-related C3 botulinum toxin substrate 1 (Rac1) was found to be a promoter of the epithelial–mesenchymal transition (EMT) and is also attracting attention as a new therapeutic target. This study aims to investigate the role of Rac1 in metastasis and its relationship with pathological findings in early-stage TSCC.

Materials and methods

Rac1 expression levels of 69 cases of stage I/II TSCC specimens and their association with clinicopathological characteristics were evaluated by immunohistochemical staining. The role of Rac1 in oral squamous cell carcinoma (OSCC) was examined after Rac1 in OSCC cell lines was silenced in vitro.

Results

High Rac1 expression was significantly associated with the depth of invasion (DOI), tumor budding (TB), vascular invasion, and SLNM (p < 0.05). Univariate analyses revealed that Rac1 expression, DOI, and TB were factors significantly associated with SLNM (p < 0.05). Moreover, our multivariate analysis suggested that Rac1 expression was the only independent determinant of SLNM. An in vitro study revealed that Rac1 downregulation tended to decrease cell migration and proliferation.

Conclusion

Rac1 was suggested to be an important factor in the metastasis of OSCC, and it could be useful as a predictor of SLNM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DFS:

Disease-free survival

DOI:

Depth of invasion

EMT:

Epithelial-mesenchymal transition

END:

Elective neck dissedtion

HR:

Hazard retios

NCCN:

National Comprehensive Cancer Network

OSCC:

Oral squamous cell carcinoma

PBS:

Phosphate-buffered saline

ROC:

Receiver operating characteristics

TSCC:

Tongue squamous cell carcinoma

References

  1. Dhanuthai K, Rojanawatsirivej S, Thosaporn W et al (2018) Oral cancer: a multicenter study. Med Oral Patol Oral Cir Bucal 23:e23–e29

    CAS  PubMed  Google Scholar 

  2. Krishna Rao SV, MGK. KRoberts-Thomson et al (2013) Epidemiology of oral cancer in Asia in the past decade- an update(2000–2012). Asian Pac J cancer 14:5567–77

    Article  Google Scholar 

  3. Tota JE, Anderson WF, Coffey C et al (2017) Rising incidence of oral tongue cancer among white men and women in the United States, 1973–2012. Oral Oncol 67:146–52

    Article  PubMed  Google Scholar 

  4. Report of Head and Neck Cancer Registry of Japan Clinical Statistics of Registered Patients, (2018) http://www.jshnc.umin.ne.jp/pdf/HNCreport_2018.pdf. Accessed October 2022

  5. Lim SC, Zhang S, Ishii G et al (2004) Predictive markers for late cervical metastasis in stage I and II invasive squamous cell carcinoma of the oral tongue. Clin Cancer Res 10:166–172

    Article  CAS  PubMed  Google Scholar 

  6. Goto M, Hasegawa Y, Terada A et al (2005) Prognostic significance of late cervical metastasis and distant failure in patients with stage I and II oral tongue cancers. Oral Oncol 41:62–69

    Article  PubMed  Google Scholar 

  7. D’Cruz AK, Vaish R, Kapre N et al (2015) Elective versus therapeutic neck dissection in node-negative oral cancer. N Engl J Med 373:521–529

    Article  PubMed  Google Scholar 

  8. Wushou A, Yibulayin F, Sheng L et al (2021) Elective neck dissection improves the survival of patients with T2N0M0 oral squamous cell carcinoma: a study of the SEER database. B.M.C. Cancer 21:1309

    Article  CAS  Google Scholar 

  9. Kurokawa H, Yamashita Y, Takeda S et al (2002) Risk factors for late cervical lymph node metastases in patients with stage I or II. Head Neck 24:731–736

    Article  PubMed  Google Scholar 

  10. Hori Y, Kubota A, Yokose T (2017) Predictive significance of tumor depth and budding for late Lymoh node metastases in patients with clinical N0 early oral tongue carcinoma. Head Neck 11:477–486

    Google Scholar 

  11. Nguyen KA, Le KQ (2022) Predictive factors of occult cervical lymph node metastasis in tongue cancer. Oral Sci Int, 1–7

  12. Liu S, Liu L, Ye W et al (2016) High vimentin expression associated with lymph node metastasis and predicated a poor prognosis in oral squamous cell carcinoma. Sci Rep 6:38834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Aiello NM, Kang Y (2019) Context-dependent EMT programs in cancer metastasis. J Exp Med 216:1016–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhou Y, Liao Q, Han Y et al (2016) Rac1 overexpression is correlated with epithelial mesenchymal transition and predicts poor prognosis in non-small cell lung cancer. J Cancer 7:2100–2109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Leng R, Liao G, Wang H et al (2015) Rac1 expression in epithelial ovarian cancer: effect on cell EMT and clinical outcome. Med Oncol 32:329

    Article  PubMed  Google Scholar 

  16. Rajamani R, Berrier A, Alahari SK (2011) Role of Rho GTPase and their regulators in cancer progression. Front Biosci 16:2561–2571

    Article  Google Scholar 

  17. Bustelo XR, Sauzeau V, Berenjeno IM (2007) GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo. BioEssays 29:356–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ehrlich JS, Hansen MD, Nelson WJ (2002) Spation-temporal regulation of Rac1 localization and lamellipodia dynamics during Epithlial cell-cell adhesion. Dev Cell 3:259–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bid HK, Roberts RD, Manchanda PK et al (2013) Rac1: an emerging therapeutic option for targeting cancer angiogenesis and metastasis. Mol Cancer Ther 12:1925–1934

    Article  CAS  PubMed  Google Scholar 

  20. Ridley AJ (2001) Rho GTPases and cell migration. J Cell Sci 114:2713–2722

    Article  CAS  PubMed  Google Scholar 

  21. Yang WH, Lan HY, Huang CH et al (2012) RAC1 activation mediates Twist1-induced cancer cell migration. Nat Cell Biol 14:366–374

    Article  CAS  PubMed  Google Scholar 

  22. Yang Q, Luo GY, Li Y et al (2013) Expression of Rac-1 related to tumor depth, lymph node metastasis and patient prognosis in esophageal squamous cell carcinoma. Med Oncol 30:689

    Article  PubMed  Google Scholar 

  23. Schnelzer A, Prechtel D, Knaus U et al (2000) Rac1 in human breast cancer: overexpression, mutation analysis, and characterization of a new isoform, Rac1b. Oncogene 19:3013–3020

    Article  CAS  PubMed  Google Scholar 

  24. Crnogorac-Jurcevic T, Efthimiou E, Capelli P et al (2001) Gene expression profiles of pancreatic cancer and stromal desmoplasia. Oncogene 20:7437–7446

    Article  CAS  PubMed  Google Scholar 

  25. Zhou K, Rao J, Zhou ZH et al (2018) Rac1-GTP promotes epithelial-mesenchymal transition and invasion of colorectal cancer by activation of STAT3. Lab Invest 98:989–998

    Article  CAS  PubMed  Google Scholar 

  26. Ji J, Feng X, Shi M et al (2015) Rac1 is correlated with aggressiveness and a potential therapeutic target for gastric cancer. Int J Oncol 46:1343–1353

    Article  CAS  PubMed  Google Scholar 

  27. Toyama Y, Kontani K, Katada T et al (2019) Conformational landscape alternations promote oncogenic activities of Ras-related C3 botulinum toxin substrate 1 as revealed by NMR. Sci Adv 5:eaav8945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Matsuoka Y, Al-Shareef H, Kogo M et al (2021) Effects of decreased Rac activity and malignant state on oral squamous cell carcinoma in vitro. PLoS ONE 16:e0212323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu SY, Yen CY, Yang SC et al (2004) Overexpression of Rac-1 small GTPase binding protein in oral squamous cell carcinoma. J Oral Maxillofac Surg 62:702–707

    Article  PubMed  Google Scholar 

  30. Lydiatt WM, Patel SG, O’Sullivan B, et al (2017) Head and neck cancers-major changes in the American Joint Committee on Cancer eighth edition cancer staging manual. C.A. Cancer J Clin, 67: 122–37

  31. Yoon C, Cho SJ, Chang KK et al (2017) Role of Rac1 pathway in epithelial-to-mesenchymal transition and cancer stem-like cell phenotypes in gastric adenocarcinoma. Mol Cancer Res 15:1106–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tobar N, Villar V, Santibanez JF (2010) ROS-NFkappaB mediates TGF-beta1-induced expression of urokinase-type plasminogen activator, matrix metalloproteinase-9 and cell invasion. Mol Cell Biochem 340:195–202

    Article  CAS  PubMed  Google Scholar 

  33. Zhu G, Wang Y, Huang B et al (2012) A Rac1/PAK1 cascade controls β-catenin activation in colon cancer cells. Oncogene 31:1001–1012

    Article  CAS  PubMed  Google Scholar 

  34. Jaffe AB, Hall A (2005) Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21:247–269

    Article  CAS  PubMed  Google Scholar 

  35. Gastonguay A, Berg T, Hauser AD et al (2012) The role of Rac1 in the regulation of NF-κB activity, cell proliferation, and cell migration in non-small cell lung carcinoma. Cancer Biol Ther 13:647–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kaneto N, Yokoyama S, Hayakawa Y et al (2014) Rac1 inhibition as a therapeutic target for gefitinib-resistant non-small-cell lung cancer. Cancer Sci 105:788–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kogai T, Liu YY, Mody K et al (2012) Regulation of sodium iodide symporter gene expression by Rac1/p38β mitogen-activated protein kinase signaling pathway in MCF-7 breast cancer cells. J Biol Chem 287:3292–3300

    Article  CAS  PubMed  Google Scholar 

  38. Bauer NN, Chen YW, Samant RS et al (2007) Rac1 activity regulates proliferation of aggressive metastatic melanoma. Exp Cell Res 313:3832–3839

    Article  CAS  PubMed  Google Scholar 

  39. LoPiccolo J, Blumenthal GM, Bernstein WB et al (2008) Targeting the PI3K/Akt/mTOR pathway: effective combinations and clinical considerations. Drug Resist Upda 11:32–50

    Article  CAS  Google Scholar 

  40. Serafino A (2012) New molecular biomarkers candidates for the development of multiparametric platforms for hepatocellular carcinoma diagnosis, prognosis and personalised therapy. http://cancerlink.ru/ennew-molecular-biomarkers-for-hepatocellular-carcinoma-diagnosis.html. Accessed October 2022

  41. Le PN, McDermott JD, Jimeno A (2015) Targeting the Wnt pathway in human cancers: therapeutic targeting with a focus on OMP-54F28. Pharmacol Ther 146:1–11

    Article  CAS  PubMed  Google Scholar 

  42. Kamai T, Shirataki H, Nakanishi K et al (2010) Increased Rac1 activity and Pak1 overexpression are associated with lymphovascular invasion and lymph node metastasis of upper urinary tract cancer. B.M.C. Cancer 10:164

    Article  Google Scholar 

  43. Du X, Wang S, Lu J et al (2012) Clinical value of Tiam1-Rac1 signaling in primary gallbladder carcinoma. Med Oncol 29:1873–1878

    Article  CAS  PubMed  Google Scholar 

  44. Ueno H, Murphy J, Jass JR et al (2002) Tumor ‘budding’ as an index to estimate the potential of aggressiveness in rectal cancer. Histopathology 40:127–132

    Article  CAS  PubMed  Google Scholar 

  45. Grigore AD, Jolly MK, Jia D et al (2016) Tumor budding: the name is EMT. Partial EMT J Clin Med 5:51

    Article  PubMed  Google Scholar 

  46. Head and Neck Cancers Version 1, (2022) National Comprehensive Cancer Network (NCCN)

  47. Zenga J, Divi V, Stadler M et al (2019) Lymph node yield, depth of invasion, and survival in node-negative oral cavity cancer. Oral Oncol 98:125–131

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Kazunari Higa and Junichirou Inada for their support and technical assistance

Author information

Authors and Affiliations

Authors

Contributions

MY, TN: Study concepts, Study design, MY,TS: Data acquisition, MY, KH, HS: Quality control of data and algorithms, MY, SS: Data analysis and interpretation, MY, SO: Statistical analysis, MY, SS, SO: Manuscript preparation, MY, TS: Manuscript editing, MY, TN: Manuscript review.

Corresponding author

Correspondence to Masae Yamazaki.

Ethics declarations

Conflict of interest

None declared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamazaki, M., Sekikawa, S., Suzuki, T. et al. Rac1 activation in oral squamous cell carcinoma as a predictive factor associated with lymph node metastasis. Int J Clin Oncol 28, 1129–1138 (2023). https://doi.org/10.1007/s10147-023-02374-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-023-02374-2

Keywords

Navigation