Skip to main content

Advertisement

Log in

Rac1 expression in epithelial ovarian cancer: effect on cell EMT and clinical outcome

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Ras-related C3 botulinum toxin substrate 1 (rac1) has been implicated in tumor epithelial–mesenchymal transition (EMT); however, limited information is available regarding the role of rac1 in epithelial ovarian cancer (EOC). This study aimed to evaluate the correlation of rac1 expression with EMT and EOC prognosis. Rac1 protein levels of 150 EOC specimens were evaluated by immunohistochemical staining. Survival analysis was performed to determine the correlation between rac1 expression and survival. Cellular and molecular changes were also examined after rac1 in ovarian cancer cells was silenced in vitro and in vivo. The mechanism of rac1 on EMT was investigated by Western blot analysis. Rac1 was highly expressed in EOC. Rac1 overexpression was closely associated with advanced stage based on International Federation of Gynecology and Obstetrics, poor grade, serum Ca-125, and residual tumor size. Survival analyses demonstrated that patients with high rac1 expression levels were more susceptible to early tumor recurrence with very poor prognosis. This study revealed that rac1 downregulation decreased cell EMT and proliferation capability in vitro and in vivo. Rac1 expression possibly altered cell EMT by interacting with p21-activated kinase 1 and p38 mitogen-activated protein kinase signaling pathways. The present study showed that rac1 overexpression is associated with cell EMT and poor EOC prognosis. Rac1 possibly plays an important role in predicting EOC metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;50(5):277–300. doi:10.3322/caac.20073.

    Article  Google Scholar 

  2. Ozols RF, Bookman MA, Connolly DC, Daly MB, Godwin AK, Schilder RJ, et al. Focus on epithelial ovarian cancer. Cancer Cell. 2004;5(1):19–24.

    Article  CAS  PubMed  Google Scholar 

  3. Tang L, Yang J, Ng SK, Rodriguez N, Choi PW, Vitonis A, et al. Autoantibody profiling to identify biomarkers of key pathogenic pathways in mucinous ovarian cancer. Eur J Cancer. 2010;46(1):170–9. doi:10.1016/j.ejca.2009.10.003.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Gentry-Maharaj A, Menon U. Screening for ovarian cancer in the general population. Best Pract Res Clin Obstet Gynaecol. 2012;26(2):243–56. doi:10.1016/j.bpobgyn.2011.11.006.

    Article  PubMed  Google Scholar 

  5. Kohn EC, Hurteau J. Ovarian cancer: making its own rules-again. Cancer. 2013;119(3):474–6. doi:10.1002/cncr.27833.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Jeong GO, Shin SH, Seo EJ, Kwon YW, Heo SC, Kim KH, et al. TAZ mediates lysophosphatidic acid-induced migration and proliferation of epithelial ovarian cancer cells. Cell Physiol Biochem. 2013;32(2):253–63. doi:10.1159/000354434.

    Article  CAS  PubMed  Google Scholar 

  7. Kalra RS, Bapat SA. Expression proteomics predicts loss of RXR-γ during progression of epithelial ovarian cancer. PLoS One. 2013;8(8):e70398. doi:10.1371/journal.pone.0070398.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Zhong YC, Zhang T, Di W, Li WP. Thrombin promotes epithelial ovarian cancer cell invasion by inducing epithelial–mesenchymal transition. J Gynecol Oncol. 2013;24(3):265–72. doi:10.3802/jgo.2013.24.3.265.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Shirkoohi R. Epithelial mesenchymal transition from a natural gestational orchestration to a bizarre cancer disturbance. Cancer Sci. 2013;104(1):28–35. doi:10.1111/cas.12074.

    Article  CAS  PubMed  Google Scholar 

  10. Rodriguez FJ, Lewis-Tuffin LJ, Anastasiadis PZ. E-cadherin’s dark side: possible role in tumor progression. Biochim Biophys Acta. 2012;1826(1):23–31. doi:10.1016/j.bbcan.2012.03.002.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Gallo D, Ferlini C, Scambia G. The epithelial–mesenchymal transition and the estrogen-signaling in ovarian cancer. Curr Drug Targets. 2010;11(4):474–81.

    Article  CAS  PubMed  Google Scholar 

  12. Vergara D, Merlot B, Lucot JP, Collinet P, Vinatier D, Fournier I, et al. Epithelial–mesenchymal transition in ovarian cancer. Cancer Lett. 2010;291(1):59–66.

    Article  CAS  PubMed  Google Scholar 

  13. Hu J, Shao S, Song Y, Zhao J, Dong Y, Gong L, Yang P. Hepatocyte growth factor induces invasion and migration of ovarian cancer cells by decreasing the expression of E-cadherin, beta-catenin, and caveolin-1. Anat Rec (Hoboken). 2010;293:1134–9. doi:10.1016/j.canlet.2009.09.017.

    Article  CAS  Google Scholar 

  14. Huang KJ, Sui LH. The relevance and role of vascular endothelial growth factor C, matrix metalloproteinase-2 and E-cadherin in epithelial ovarian cancer. Med Oncol. 2012;29(1):318–23. doi:10.1007/s12032-010-9817-4.

    Article  CAS  PubMed  Google Scholar 

  15. Rathinam R, Berrier A, Alahari SK. Role of Rho GTPases and their regulators in cancer progression. Front Biosci (Landmark Ed). 2011;1(16):2561–71.

    Article  Google Scholar 

  16. Bauer NN, Chen YW, Samant RS, Shevde LA, Fodstad O. Rac1 activity regulates proliferation of aggressive metastatic melanoma. Exp Cell Res. 2007;313(18):3832–9.

    Article  CAS  PubMed  Google Scholar 

  17. Santibáñez JF, Kocić J, Fabra A, Cano A, Quintanilla M. Rac1 modulates TGF-beta1-mediated epithelial cell plasticity and MMP9 production in transformed keratinocytes. FEBS Lett. 2010;584(11):2305–10. doi:10.1016/j.febslet.2010.03.042.

    Article  PubMed  Google Scholar 

  18. Lv Z, Hu M, Zhen J, Lin J, Wang Q, Wang R. Rac1/PAK1 signaling promotes epithelial–mesenchymal transition of podocytes in vitro via triggering β-catenin transcriptional activity under high glucose conditions. Int J Biochem Cell Biol. 2013;45(2):255–64. doi:10.1016/j.biocel.2012.11.003.

    Article  CAS  PubMed  Google Scholar 

  19. Hage B, Meinel K, Baum I, Giehl K, Menke A. Rac1 activation inhibits E-cadherin-mediated adherens junctions via binding to IQGAP1 in pancreatic carcinoma cells. Cell Commun Signal. 2009;7:23. doi:10.1186/1478-811X-7-23.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Zhang J, Tang L, Shen L, Zhou S, Duan Z, Xiao L, et al. High level of WAVE1 expression is associated with tumor aggressiveness and unfavorable prognosis of epithelial ovarian cancer. Gynecol Oncol. 2012;127(1):223–30. doi:10.1016/j.ygyno.2012.06.008.

    Article  CAS  PubMed  Google Scholar 

  21. Zhou S, Tang L, Wang H, Dai J, Zhang J, Shen L, et al. Overexpression of c-Abl predicts unfavorable outcome in epithelial ovarian cancer. Gynecol Oncol. 2013;131(1):69–76. doi:10.1016/j.ygyno.2013.06.031.

    Article  CAS  PubMed  Google Scholar 

  22. Tahirovic S, Hellal F, Neukirchen D, Hindges R, Garvalov BK, Flynn KC, et al. Rac1 regulates neuronal polarization through the WAVE complex. J Neurosci. 2010;30(20):6930–43. doi:10.1523/JNEUROSCI.5395-09.2010.

    Article  CAS  PubMed  Google Scholar 

  23. Karpushev AV, Levchenko V, Ilatovskaya DV, Pavlov TS, Staruschenko A. Novel role of Rac1/WAVE signaling mechanism in regulation of the epithelial Na+ channel. Hypertension. 2011;57(5):996–1002.

    Article  CAS  PubMed  Google Scholar 

  24. Eden S, Rohatgi R, Podtelejnikov AV, Mann M, Kirschner MW. Mechanism of regulation of WAVE1-induced actin nucleation by Rac1 and Nck. Nature. 2002;418(6899):790–3. doi:10.1161/HYPERTENSIONAHA.110.157784.

    Article  CAS  PubMed  Google Scholar 

  25. Yamazaki D, Oikawa T, Takenawa T. Rac-WAVE-mediated actin reorganization is required for organization and maintenance of cell–cell adhesion. J Cell Sci. 2007;120(Pt 1):86–100.

    CAS  PubMed  Google Scholar 

  26. Sanchez AM, Flamini MI, Fu XD, Mannella P, Giretti MS, Goglia L, et al. Rapid signaling of estrogen to WAVE1 and moesin controls neuronal spine formation via the actin cytoskeleton. Mol Endocrinol. 2009;23(8):1193–202. doi:10.1210/me.2008-0408.

    Article  CAS  PubMed  Google Scholar 

  27. Au CW, Siu MK, Liao X, Wong ES, Ngan HY, Tam KF, et al. Tyrosine kinase B receptor and BDNF expression in ovarian cancers-effect on cell migration, angiogenesis and clinical outcome. Cancer Lett. 2009;281(2):151–61. doi:10.1016/j.canlet.2009.02.025.

    Article  CAS  PubMed  Google Scholar 

  28. Meng Erhong, Taylor Brandon, Ray Anasuya, Shevde LA, Rocconi RP. Targeted inhibition of telomerase activity combined with chemotherapy demonstrates synergy in eliminating ovarian cancer spheroid-forming cells. Gynecol Oncol. 2012;124(3):598–605. doi:10.1016/j.ygyno.2011.11.018.

    Article  CAS  PubMed  Google Scholar 

  29. Kalfa TA, Pushkaran S, Mohandas N, Hartwig JH, Fowler VM, Johnson JF, et al. Rac GTPases regulate the morphology and deformability of the erythrocyte cytoskeleton. Blood. 2006;108(12):3637–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Yang WH, Lan HY, Huang CH, Tai SK, Tzeng CH, Kao SY, et al. RAC1 activation mediates Twist1-induced cancer cell migration. Nat Cell Biol. 2012;14(4):366–74. doi:10.1038/ncb2455.

    Article  CAS  PubMed  Google Scholar 

  31. Schnelzer A, Prechtel D, Knaus U, Dehne K, Gerhard M, Graeff H, et al. Rac1 in human breast cancer: overexpression, mutation analysis, and characterization of a new isoform, Rac1b. Oncogene. 2000;19(26):3013–20.

    Article  CAS  PubMed  Google Scholar 

  32. Crnogorac-Jurcevic T, Efthimiou E, Capelli P, Blaveri E, Baron A, Terris B, et al. Gene expression profiles of pancreatic cancer and stromal desmoplasia. Oncogene. 2001;20(50):7437–46.

    Article  CAS  PubMed  Google Scholar 

  33. Vergara D, Merlot B, Lucot JP, Collinet P, Vinatier D, Fournier I, et al. Epithelial–mesenchymal transition in ovarian cancer. Cancer Lett. 2010;291(1):59–66. doi:10.1016/j.canlet.2009.09.017.

    Article  CAS  PubMed  Google Scholar 

  34. Galan Moya EM, Le Guelte A, Gavard J. PAKing up to the endothelium. Cell Signal. 2009;21(12):1727–37. doi:10.1016/j.cellsig.2009.08.006.

    Article  PubMed  Google Scholar 

  35. Bakin AV, Rinehart C, Tomlinson AK. p38 mitogen-activated protein kinase is required for TGFbeta-mediated fibroblastic transdifferentiation and cell migration. J Cell Sci. 2002;115(pt15):3193–206.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Lixue Chen and Weixue Tang for their support and technical assistance. The authors also thank Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, for providing the experimental materials. This study was supported by the National Natural Science Foundation of China (Grant No. 81372800/H1621) and Superior Doctoral Academic Dissertations Research Grant from the Chongqing Medical University.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangdan Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leng, R., Liao, G., Wang, H. et al. Rac1 expression in epithelial ovarian cancer: effect on cell EMT and clinical outcome. Med Oncol 32, 28 (2015). https://doi.org/10.1007/s12032-014-0329-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-014-0329-5

Keywords

Navigation