Skip to main content

Advertisement

Log in

Clinical impact of revisions to the WHO classification of diffuse gliomas and associated future problems

  • Invited Review Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

The publication of the 2016 World Health Organization Classification of Tumors of the Central Nervous System (2016 WHO CNS) represented a major change in the classification of brain tumors. It is essential to determine the IDH and 1p/19q statuses of diffuse gliomas to ensure that the final diagnosis is accurate. The integrated diagnostic method outlined in the 2016 WHO CNS has enabled more precise prediction of the prognoses of diffuse gliomas. However, there are further two points that need to be addressed when planning future clinical trials. The first is the problems with the WHO grading system for diffuse gliomas. The second is that examinations for IDH mutations and 1p/19q co-deletion are not sufficient on their own to accurately predict the prognosis of diffuse glioma patients. Risk of an IDH-mut diffuse glioma should be evaluated based on a combination of clinical factors (age and the resection rate), molecular factors (the presence/absence of CDKN2A deletion), and histological factors (morphology and the mitotic index). Glioblastoma (GBM) have also been classified according to their IDH status; however, the frequency of IDH gene mutations is only 5–10% in GBM. Other molecular markers such as MGMT methylation, pTERT mutations and EGFR amplification could be more important to predict clinical outcome. Therefore, the next revision of the classification of diffuse gliomas will propose a detailed classification based on additional markers. In the near future, treatments for diffuse gliomas will be chosen according to the molecular profile of each tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Louis DN, Ohgaki H, Wiestler OD, et al. (eds) (2016) WHO classification of tumours of the central nervous system (revised edition), 4th edn. International Agency for Research on Cancer, Lyon

    Google Scholar 

  2. Korshunov A, Meyer J, Capper D et al (2009) Combined molecular analysis of BRAF and IDH1 distinguishes pilocytic astrocytoma from diffuse astrocytoma. Acta Neuropathol 118:401–405

    Article  CAS  PubMed  Google Scholar 

  3. Louis DN, Wesseling P, Paulus W et al (2018) cIMPACT-NOW update 1: not otherwise specified (NOS) and not elsewhere classified (NEC). Acta Neuropathol 135:481–484

    Article  PubMed  Google Scholar 

  4. Louis DN, Giannini C, Capper D et al (2018) cIMPACT-NOW update 2: diagnostic clarifications for diffuse midline glioma, H3 K27M-mutant and diffuse astrocytoma/anaplastic astrocytoma. IDH Mutant Acta Neuropathol 135:639–642

    Article  PubMed  Google Scholar 

  5. Brat DJ, Aldape K, Colman H et al (2018) cIMPACT-NOW update 3: recommended diagnostic criteria for "Diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade IV". Acta Neuropathol 136:805–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ellison DW, Hawkins C, Jones DTW et al (2019) cIMPACT-NOW update 4: diffuse gliomas characterized by MYB, MYBL1, or FGFR1 alterations or BRAFV600E mutation. Acta Neuropathol 137:683–687

    Article  CAS  PubMed  Google Scholar 

  7. Louis DN, Ohgaki H, Wiestler OD, et al. (eds) (2007) WHO classification of tumours of the central nervous system, 4th edn. International Agency for Research on Cancer, Lyon

    Google Scholar 

  8. Pignatti F, van den Bent M, Curran D et al (2002) Prognostic factors for survival in adult patients with cerebral low-grade glioma. J Clin Oncol 20:2076–2084

    Article  PubMed  Google Scholar 

  9. van den Bent MJ (2010) Interobserver variation of the histopathological diagnosis in clinical trials on glioma: a clinician’s perspective. Acta Neuropathol 120:297–304

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sahm F, Reuss D, Koelsche C et al (2014) Farewell to oligoastrocytoma: in situ molecular genetics favor classification as either oligodendroglioma or astrocytoma. Acta Neuropathol 128:551–559

    Article  CAS  PubMed  Google Scholar 

  11. Suzuki H, Aoki K, Chiba K et al (2015) Mutational landscape and clonal architecture in grade II and III gliomas. Nat Genet 47:458–468

    Article  CAS  PubMed  Google Scholar 

  12. Weller M, Weber RG, Willscher E et al (2015) Molecular classification of diffuse cerebral WHO grade II/III gliomas using genome- and transcriptome-wide profiling improves stratification of prognostically distinct patient groups. Acta Neuropathol 129:679–693

    Article  CAS  PubMed  Google Scholar 

  13. Tabouret E, Nguyen AT, Dehais C et al (2016) Prognostic impact of the 2016 WHO classification of diffuse gliomas in the French POLA cohort. Acta Neuropathol 132:625–634

    Article  PubMed  Google Scholar 

  14. van den Bent MJ, Baumert B, Erridge SC et al (2017) Interim results from the CATNON trial (EORTC study 26053–22054) of treatment with concurrent and adjuvant temozolomide for 1p/19q non-co-deleted anaplastic glioma: a phase 3, randomised, open-label intergroup study. Lancet 390:1645–1653

    Article  PubMed  PubMed Central  Google Scholar 

  15. van den Bent MJ, Afra D, de Witte O et al (2005) Long-term efficacy of early versus delayed radiotherapy for low-grade astrocytoma and oligodendroglioma in adults: the EORTC 22845 randomised trial. Lancet 366:985–990

    Article  PubMed  Google Scholar 

  16. Reuss DE, Mamatjan Y, Schrimpf D et al (2015) IDH mutant diffuse and anaplastic astrocytomas have similar age at presentation and little difference in survival: a grading problem for WHO. Acta Neuropathol 129:867–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Appay R, Dehais C, Maurage CA et al (2019) CDKN2A homozygous deletion is a strong adverse prognosis factor in diffuse malignant IDH-mutant gliomas. Neuro Oncol Neuro Oncol 21:1519–1528

    PubMed  Google Scholar 

  18. Olar A, Wani KM, Alfaro-Munoz KD et al (2015) IDH mutation status and role of WHO grade and mitotic index in overall survival in grade II–III diffuse gliomas. Acta Neuropathol 129:585–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shibahara I, Sonoda Y, Kanamori M et al (2012) IDH1/2 gene status defines the prognosis and molecular profiles in patients with grade III gliomas. Int J Clin Oncol 17:551–561

    Article  CAS  PubMed  Google Scholar 

  20. Pratt D, Natarajan SK, Banda A et al (2018) Circumscribed/non-diffuse histology confers a better prognosis in H3K27M-mutant gliomas. Acta Neuropathol 135:299–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yan H, Parsons DW, Jin G, McLendon R et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ, Friedman H, Friedman A, Reardon D, Herndon J, Kinzler KW, Velculescu VE, Vogelstein B, Stupp BDD, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  Google Scholar 

  23. Hegi ME, Diserens AC, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003

    Article  CAS  PubMed  Google Scholar 

  24. Esteller M, Hamilton SR, Burger PC et al (1999) Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res 59:793–797

    CAS  PubMed  Google Scholar 

  25. Vinagre J, Almeida A, Pópulo H et al (2013) Frequency of TERT promoter mutations in human cancers. Nat Commun 4:2185. https://doi.org/10.1038/ncomms3185

    Article  CAS  PubMed  Google Scholar 

  26. Lee Y, Koh J, Kim SI et al (2017) The frequency and prognostic effect of TERT promoter mutation in diffuse gliomas. Acta Neuropathol Commun 25:62. https://doi.org/10.1186/s40478-017-0465-1

    Article  CAS  Google Scholar 

  27. Arita H, Narita Y, Fukushima S et al (2013) Upregulating mutations in the TERT promoter commonly occur in adult malignant gliomas and are strongly associated with total 1p19q loss. Acta Neuropathol 12:267–276

    Article  CAS  Google Scholar 

  28. Eckel-Passow JE, Lachance DH, Molinaro AM et al (2015) Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med 372:2499–2508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Arita H, Yamasaki K, Matsushita Y et al (2016) A combination of TERT promoter mutation and MGMT methylation status predicts clinically relevant subgroups of newly diagnosed glioblastomas. Acta Neuropathol Commun 4(1):79

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Nguyen HN, Lie A, Li T, Chowdhury R et al (2017) Human TERT promoter mutation enables survival advantage from MGMT promoter methylation in IDH1 wild-type primary glioblastoma treated by standard chemoradiotherapy. Neuro Oncol 19:394–404

    CAS  PubMed  Google Scholar 

  31. Labussière MB, Boisselier K, Mokhtari AL et al (2014) Combined analysis of TERT, EGFR, and IDH status defines distinct prognostic glioblastoma classes. Neurology 83:1200–1206

    Article  PubMed  CAS  Google Scholar 

  32. Keles GE, Chang EF, Lamborn KR et al (2006) Volumetric extent of resection and residual contrast enhancement on initial surgery as predictors of outcome in adult patients with hemispheric anaplastic astrocytoma. J Neurosurg 105:34–40

    Article  PubMed  Google Scholar 

  33. Oppenlander ME, Wolf AB, Snyder LA et al (2014) An extent of resection threshold for recurrent glioblastoma and its risk for neurological morbidity. J Neurosurg 120:846–853

    Article  PubMed  Google Scholar 

  34. Pope WB, Sayre J, Perlina A, Villablanca JP et al (2005) MR imaging correlates of survival in patients with high-grade gliomas. AJNR Am J Neuroradiol 26:2466–2474

    PubMed  PubMed Central  Google Scholar 

  35. Sanai N, Polley M-Y, McDermott MW et al (2011) An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg 115:3–8

    Article  PubMed  Google Scholar 

  36. Kawaguchi T, Sonoda Y, Shibahara I et al (2016) Impact of gross total resection in patients with WHO grade III glioma harboring the IDH 1/2 mutation without the 1p/19q co-deletion. J Neurooncol 129:505–514

    Article  CAS  PubMed  Google Scholar 

  37. van den Bent MJ, Smits M, Kros JM et al (2017) Diffuse infiltrating oligodendroglioma and astrocytoma. J Clin Oncol 35:2394–2401

    Article  PubMed  Google Scholar 

  38. Cairncross JG, Ueki K, Zlatescu MC et al (1998) Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst 90:1473–1479

    Article  CAS  PubMed  Google Scholar 

  39. Yung WK, Prados MD, Yaya-Tur R et al (1999) Multicenter phase II trial of temozolomide in patients with anaplastic astrocytoma or anaplastic oligoastrocytoma at first relapse. J Clin Oncol 17:2762–2771

    Article  CAS  PubMed  Google Scholar 

  40. van den Bent MJ, Taphoorn MJ, Brandes AA et al (2003) (2003) Phase II study of first-line chemotherapy with temozolomide in recurrent oligodendroglial tumors: The European Organization for Research and Treatment of Cancer Brain Tumor Group Study 26971. J Clin Oncol 21:2525–2528

    Article  PubMed  CAS  Google Scholar 

  41. Buckner JC, Shaw EG, Pugh SL et al (2016) Radiation plus procarbazine, CCNU, and vincristine in low-grade glioma. N Engl J Med 374:1344–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cairncross G, Wang M, Shaw E et al (2013) Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma: long-term results of RTOG 9402. J Clin Oncol 31:337–343

    Article  CAS  PubMed  Google Scholar 

  43. van den Bent MJ, Brandes AA, Taphoorn MJ et al (2013) Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC brain tumor group study 26951. J Clin Oncol 31:344–350

    Article  PubMed  CAS  Google Scholar 

  44. van den Bent MJ, Baumert B, Errridge S et al (2017) Concurrent and adjuvant temozolomide for 1p/19q non-co-deleted anaplastic glioma: interim results of the randomized intergroup CATNON trial (EORTC study 26053–22054). Lancet 390:1645

    Article  PubMed  PubMed Central  Google Scholar 

  45. Cairncross JG, Wang M, Jenkins RB et al (2014) Benefit from procarbazine, lomustine, and vincristine in oligodendroglial tumors is associated with mutation of IDH. J Clin Oncol 32:783–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. van den Bent MJ, Erdem-Eraslan L, Idbaih A et al (2013) MGMT-STP27methylation status as predictivemarker for response to PCV in anaplastic oligodendrogliomas and oligoastrocytomas: a report from EORTC study 26951. Clin Cancer Res 19:5513–5522

    Article  PubMed  CAS  Google Scholar 

  47. Baumert BG, Hegi ME, van den Bent MJ et al (2016) Temozolomide chemotherapy versus radiotherapy in high-risk low-grade glioma (EORTC 22033–26033): a randomised, open-label, phase 3 intergroup study. Lancet Oncol 17:1521–1532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wick W, Roth P, Hartmann C et al (2016) Long-term analysis of the NOA-04 randomized phase III trial of sequential radiochemotherapy of anaplastic glioma with PCV or temozolomide. Neuro Oncol 18:1529–1537

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Chinot OL, Wick W, Mason W et al (2014) Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 370:709–722

    Article  CAS  PubMed  Google Scholar 

  50. Gilbert MR, Dignam JJ, Armstrong TS et al (2014) A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 370:699–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Stupp R, Taillibert S, Kanner A et al (2017) Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial. JAMA 318:2306–2316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kirson ED, Dbalý V, Tovarys F et al (2007) Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors. Proc Natl Acad Sci USA 104:10152–10157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dang L, Yen K, Attar EC (2016) IDH mutations in cancer and progress toward development of targeted therapeutics. Ann Oncol 27:599–608

    Article  CAS  PubMed  Google Scholar 

  54. Lassman AB, van den Bent MJ, Gan HK et al (2019) Safety and efficacy of depatuxizumab mafodotin + temozolomide in patients with EGFR-amplified, recurrent glioblastoma: results from an international phase I multicenter trial. Neuro Oncol 21:106–114

    Article  CAS  PubMed  Google Scholar 

  55. Caccese M, Indraccolo S, Zagonel V et al (2019) (2019) PD-1/PD-L1 immune-checkpoint inhibitors in glioblastoma: a concise review. Crit Rev Oncol Hematol 135:128–134

    Article  PubMed  Google Scholar 

  56. Jones DT, Kocialkowski S, Liu L et al (2009) Oncogenic RAF1 rearrangement and a novel BRAF mutation as alternatives to KIAA1549:BRAF fusion in activating the MAPK pathway in pilocytic astrocytoma. Oncogene 28:2119–2123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Collins VP, Jones DT, Giannini C (2015) Pilocytic astrocytoma: pathology, molecular mechanisms and markers. Acta Neuropathol 129:775–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bernstein A, Mrowczynski OD, Greene A et al (2019) Dual BRAF/MEK therapy in BRAF V600E-mutated primary brain tumors: a case series showing dramatic clinical and radiographic responses and a reduction in cutaneous toxicity. J Neurosurg. https://doi.org/10.3171/2019.8.JNS19643

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Medical English Service (www.med-english.com) for conducting the English language review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukihiko Sonoda.

Ethics declarations

Conflict of interest

The authors declare that no potential conflicts of interest exist.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonoda, Y. Clinical impact of revisions to the WHO classification of diffuse gliomas and associated future problems. Int J Clin Oncol 25, 1004–1009 (2020). https://doi.org/10.1007/s10147-020-01628-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-020-01628-7

Keywords

Navigation