Skip to main content

Advertisement

Log in

Genome editing: An insight into disease resistance, production efficiency, and biomedical applications in livestock

  • Review
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

One of the primary concerns for the survival of the human species is the growing demand for food brought on by an increasing global population. New developments in genome-editing technology present promising opportunities for the growth of wholesome and prolific farm animals. Genome editing in large animals is used for a variety of purposes, including biotechnology to improve food production, animal health, and pest management, as well as the development of animal models for fundamental research and biomedicine. Genome editing entails modifying genetic material by removing, adding, or manipulating particular DNA sequences from a particular locus in a way that does not happen naturally. The three primary genome editors are CRISPR/Cas 9, TALENs, and ZFNs. Each of these enzymes is capable of precisely severing nuclear DNA at a predetermined location. One of the most effective inventions is base editing, which enables single base conversions without the requirement for a DNA double-strand break (DSB). As reliable methods for precise genome editing in studies involving animals, cytosine and adenine base editing are now well-established. Effective zygote editing with both cytosine and adenine base editors (ABE) has resulted in the production of animal models. Both base editors produced comparable outcomes for the precise editing of point mutations in somatic cells, advancing the field of gene therapy. This review focused on the principles, methods, recent developments, outstanding applications, the advantages and disadvantages of ZFNs, TALENs, and CRISPR/Cas9 base editors, and prime editing in diverse lab and farm animals. Additionally, we address the methodologies that can be used for gene regulation, base editing, and epigenetic alterations, as well as the significance of genome editing in animal models to better reflect real disease. We also look at methods designed to increase the effectiveness and precision of gene editing tools.

Simple Summary

Genome editing in large animals is used for a variety of purposes, including biotechnology to improve food production, animal health, and pest management, as well as the development of animal models for fundamental research and biomedicine. This review is an overview of the existing knowledge of the principles, methods, recent developments, outstanding applications, the advantages and disadvantages of zinc finger nucleases (ZFNs), transcription-activator-like endonucleases (TALENs), and clustered regularly interspaced short palindromic repeats associated protein 9 (CRISPR/Cas 9), base editors and prime editing in diverse lab and farm animals, which will offer better and healthier products for the entire human race.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

No new data were created in this study. Data sharing is not applicable to this article.

References

  • Adli M (1911) The CRISPR tool kit for genome editing and beyond. Nat Commun 2018:9

    Google Scholar 

  • Alberio R, Wolf E (2021) 25th ANNIVERSARY OF CLONING BY SOMATIC-CELL NUCLEAR TRANSFER: Nuclear transfer and the development of genetically modified/gene edited livestock. Reproduction 162:F59–F68

    PubMed  PubMed Central  Google Scholar 

  • Annunziato S, Lutz C, Henneman L (2020) In situ CRISPR-Cas9 base editing for the development of genetically engineered mouse models of breast cancer. EMBO J 39:e102169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anzalone AV, Koblan LW, Liu DR (2020) Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol 38:824–844

    Article  CAS  PubMed  Google Scholar 

  • Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A et al (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576:149–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azameti MK, Dauda WP (2021) Base Editing in Plants: Applications, Challenges, and Future Prospects. Front Plant Sci 12:664997

    Article  PubMed  PubMed Central  Google Scholar 

  • Bao L, Chen H, Jong U, Rim C, Li W, Lin X, Zhang D, Luo Q, Cui C, Huang H et al (2014) Generation of GGTA1 biallelic knockout pigs via zinc-finger nucleases and somatic cell nuclear transfer. Sci China Life Sci 57:263–268

    Article  CAS  PubMed  Google Scholar 

  • Bertolini LR, Meade H, Lazzarotto CR, Martins LT, Tavares KC, Bertolini M, Murray JD (2016) The transgenic animal platform for biopharmaceutical production. Transgenic Res 25:329–343

    Article  CAS  PubMed  Google Scholar 

  • Bibikova M, Carroll D, Segal DJ, Trautman JK, Smith J, Kim YG, Chandrasegaran S (2021) Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol Cell Biol 21:289–297

    Article  Google Scholar 

  • Bishop TF, Van Eenennaam AL (2020) Genome editing approaches to augment livestock breeding programs. J Exp Biol 223:jeb207159

    Article  PubMed  Google Scholar 

  • Boch J, Bonas U (2010) Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol 48:419–436

    Article  CAS  PubMed  Google Scholar 

  • Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512

    Article  CAS  PubMed  Google Scholar 

  • Bolotin A, Quinquis B, Sorokin A, Ehrlich SD (2005) Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology (Reading) 151:2551–2561

    Article  CAS  PubMed  Google Scholar 

  • Bonas U, Stall RE, Staskawicz B (1989) Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv. Vesicatoria Mol Gen Genet 218:127–136

    Article  CAS  PubMed  Google Scholar 

  • Bozorg Qomi S, Asghari A, Mojarrad M (2019) An Overview of the CRISPR-Based Genomic- and Epigenome-Editing System: Function, Applications, and Challenges. Adv Biomed Res 8:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Brooks K, Burns G, Spencer TE (2015) Biological Roles of Hydroxysteroid (11-Beta) Dehydrogenase 1 (HSD11B1), HSD11B2, and Glucocorticoid Receptor (NR3C1) in Sheep Conceptus Elongation. Biol Reprod 93:38

    Article  PubMed  Google Scholar 

  • Burkard C, Lillico SG, Reid JBE, Mileham AJ, Ait-Ali T, Whitelaw CB, Archibald AL (2017) Precision engineering for PRRSV resistance in pigs: Macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function. PLoS Pathog 13:e1006206

    Article  PubMed  PubMed Central  Google Scholar 

  • Butler JR, Martens GR, Li P, Wang ZY, Estrada JL, Ladowski JM, Tector M, Tector AJ (2016) The fate of human platelets exposed to porcine renal endothelium: a single-pass model of platelet uptake in domestic and genetically modified porcine organs. J Surg Res 200:698–706

    Article  PubMed  Google Scholar 

  • Carlson DF, Lancto CA, Zang B, Kim ES, Walton M, Oldeschulte D, Seabury C, Sonstegard TS, Fahrenkrug SC (2016) Production of hornless dairy cattle from genome-edited cell lines. Nat Biotechnol 34:479–481

    Article  CAS  PubMed  Google Scholar 

  • Carlson DF, Tan W, Lillico SG, Stverakova D, Proudfoot C, Christian M, Voytas DF, Long CR, Whitelaw CB, Fahrenkrug SC (2012) Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci USA 109:17382–17387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carreras A, Pane LS, Nitsch R, Madeyski-Bengtson K, Porritt M, Akcakaya P, Taheri-Ghahfarokhi A, Ericson E, Bjursell M, Perez-Alcazar M et al (2019) In vivo genome and base editing of a human PCSK9 knock-in hypercholesterolemic mouse model. BMC Biol 17:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Charpentier E, Richter H, van der Oost J, White MF (2015) Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity. FEMS Microbiol Rev 39:428–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Choi J, Bailey S (2014) Cut site selection by the two nuclease domains of the Cas9 RNA-guided endonuclease. J Biol Chem 289:13284–13294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Pan K, Chen Z, Li Y, Ding B, Han C, Cao Z, Bao W, Zhang Y (2019) Production of porcine aminopeptidase N (pAPN) site-specific edited pigs. Anim Sci J 90:366–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conticello SG (2008) The AID/APOBEC family of nucleic acid mutators. Genome Biol 9:229

    Article  PubMed  PubMed Central  Google Scholar 

  • Crispo M, Mulet AP, Tesson L, Barrera N, Cuadro F, dos Santos-Neto PC, Nguyen TH, Crénéguy A, Brusselle L, Anegón I et al (2015) Efficient Generation of Myostatin Knock-Out Sheep Using CRISPR/Cas9 Technology and Microinjection into Zygotes. PLoS One 10:e0136690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui C, Song Y, Liu J, Ge H, Li Q, Huang H, Hu L, Zhu H, Jin Y, Zhang Y (2015) Gene targeting by TALEN-induced homologous recombination in goats directs production of β-lactoglobulin-free, high-human lactoferrin milk. Sci Rep 5:10482

    Article  PubMed  PubMed Central  Google Scholar 

  • Cullot G, Boutin J, Toutain J, Cullot G, Boutin J, Toutain J, Prat F, Pennamen P, Rooryck C, Teichmann M et al (2019) CRISPR-Cas9 genome editing induces megabase-scale chromosomal truncations. Nat Commun 10:1136

    Article  PubMed  PubMed Central  Google Scholar 

  • Davies CJ, Fan Z, Morgado KP, Liu Y, Regouski M, Meng Q, Thomas AJ, Yun SI, Song BH, Frank JC et al (2022) Development and characterization of type I interferon receptor knockout sheep: A model for viral immunology and reproductive signaling. Front Genet 13:986316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis SR, Spelman RJ, Littlejohn MD (2017) BREEDING AND GENETICS SYMPOSIUM: Breeding heat tolerant dairy cattle: the case for introgression of the "slick" prolactin receptor variant into dairy breeds. J Anim Sci 95:1788–1800

    CAS  PubMed  Google Scholar 

  • Doetschman T, Gregg RG, Maeda N, Hooper ML, Melton DW, Thompson S, Smithies O (1987) Targetted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature 330:576–578

    Article  CAS  PubMed  Google Scholar 

  • Eenennaam AL, Silva DF, Van F, Trott JF, Zilberman D (2021) Genetic Engineering of Livestock: The Opportunity Cost of Regulatory Delay. Annu Rev Anim Biosci 9:453–478

    Article  PubMed  Google Scholar 

  • Fan Z, Perisse IV, Cotton CU, Regouski M, Meng Q, Domb C, Van Wettere AJ, Wang Z, Harris A, White KL et al (2018) A sheep model of cystic fibrosis generated by CRISPR/Cas9 disruption of the CFTR gene. JCI Insight 3:e123529

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng C, Wang X, Shi H, Yan Q, Zheng M, Li J, Zhang Q, Qin Y, Zhong Y, Mi J et al (2018) Generation of ApoE deficient dogs via combination of embryo injection of CRISPR/Cas9 with somatic cell nuclear transfer. J Genet Genomics 45:47–50

    Article  CAS  PubMed  Google Scholar 

  • Flisikowska T, Kind A, Schnieke A (2013) The new pig on the block: modelling cancer in pigs. Transgenic Res 22:673–680

    Article  CAS  PubMed  Google Scholar 

  • Gaj T, Gersbach CA, Barbas ZFN, C.F. (2013) TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Y, Wu H, Wang Y, Liu X, Chen L, Li Q, Cui C, Liu X, Zhang J, Zhang Y (2017) Single Cas9 nickase induced generation of NRAMP1 knock-in cattle with reduced off-target effects. Genome Biol 18:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Gasiunas G, Barrangou R, Horvath P, Siksnys V (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA 109:E2579–E2586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR (2017) Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551:464–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, Jenkins SS, Wood A, Cui X, Meng X et al (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325:433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geurts MH, de Poel E, Pleguezuelos-Manzano C, Oka R, Carrillo L, Andersson-Rolf A, Boretto M, Brunsveld JE, van Boxtel R, Beekman JM et al (2021) Evaluating CRISPR-based prime editing for cancer modeling and CFTR repair in organoids. Life Sci Alliance 4:e202000940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giassetti MI, Ciccarelli M, Oatley JM (2019) Spermatogonial Stem Cell Transplantation: Insights and Outlook for Domestic Animals. Annu Rev Anim Biosci 7:385–401

    Article  PubMed  Google Scholar 

  • Gim GM, Kwon DH, Eom KH, Moon J, Park JH, Lee WW, Jung DJ, Kim DH, Yi JK, Ha JJ et al (2022) Production of MSTN-mutated cattle without exogenous gene integration using CRISPR-Cas9. Biotechnol J 17:e2100198

    Article  PubMed  Google Scholar 

  • Golding MC, Long CR, Carmell MA, Hannon GJ, Westhusin ME (2006) Suppression of prion protein in livestock by RNA interference. Proc Natl Acad Sci USA 103:5285–5290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonen S, Jenko J, Gorjanc G, Mileham AJ, Whitelaw CB, Hickey JM (2017) Potential of gene drives with genome editing to increase genetic gain in livestock breeding programs. Genet Sel Evol 49:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Hai T, Teng F, Guo R, Li W, Zhou Q (2014) One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res 24:372–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hauschild J, Petersen B, Santiago Y, Queisser AL, Carnwath JW, Lucas-Hahn A, Zhang L, Meng X, Gregory PD, Schwinzer R et al (2011) Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proc Natl Acad Sci USA 108:12013–12017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Z, Zhang T, Jiang L, Zhou M, Wu D, Mei J, Cheng Y (2018) Use of CRISPR/Cas9 technology efficiently targeted goat myostatin through zygotes microinjection resulting in double-muscled phenotype in goats. Biosci Rep 38:BSR20180742C

    Article  Google Scholar 

  • Heyer WD, Ehmsen KT, Liu J (2010) Regulation of homologous recombination in eukaryotes. Annu Rev Genet 44:113–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu JH, Miller SM, Geurts MH, Tang W, Chen L, Sun N, Zeina CM, Gao X, Rees HA, Lin Z et al (2018) Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556:57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu R, Fan ZY, Wang BY, Deng SL, Zhang XS, Zhang JL, Han HB, Lian ZX (2017) RAPID COMMUNICATION: Generation of FGF5 knockout sheep via the CRISPR/Cas9 system. J Anim Sci 95:2019–2024

    CAS  PubMed  Google Scholar 

  • Ishino T, Hashimoto M, Amagasa M, Saito N, Dochi O, Kirisawa R, Kitamura H (2018) Establishment of protocol for preparation of gene-edited bovine ear-derived fibroblasts for somatic cell nuclear transplantation. Biomed Res 39:95–104

    Article  CAS  PubMed  Google Scholar 

  • Jiang T, Henderson JM, Coote K, Cheng Y, Valley HC, Zhang XO, Wang Q, Rhym LH, Cao Y, Newby GA et al (1979) Chemical modifications of adenine base editor mRNA and guide RNA expand its application scope. Nat Commun 2020:11

    Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, Ma E, Anders C, Hauer M, Zhou K, Lin S et al (2014) Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343:1247997

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalds P, Gao Y, Zhou S, Cai B, Huang X, Wang X, Chen Y (2020) Redesigning small ruminant genomes with CRISPR toolkit: Overview and perspectives. Theriogenology 147:25–33

    Article  CAS  PubMed  Google Scholar 

  • Kalds P, Zhou S, Cai B, Liu J, Wang Y, Petersen B, Sonstegard T, Wang X, Chen Y (2019) Sheep and Goat Genome Engineering: From Random Transgenesis to the CRISPR Era. Front Genet 10:750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan SH (2019) Genome-Editing Technologies: Concept, Pros, and Cons of Various Genome-Editing Techniques and Bioethical Concerns for Clinical Application. Mol Ther Nucleic Acids 16:326–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim K, Ryu SM, Kim ST, Baek G, Kim D, Lim K, Chung E, Kim S, Kim JS (2017b) Highly efficient RNA-guided base editing in mouse embryos. Nat Biotechnol 35:435–437

    Article  CAS  PubMed  Google Scholar 

  • Kim V, Malashkevich XV, Roday S, Lisbin M, Schramm VL, Almo SC (2006) Structural and kinetic characterization of Escherichia coli TadA, the wobble-specific tRNA deaminase. Biochemistry 45:6407–6416

    Article  CAS  PubMed  Google Scholar 

  • Kim YB, Komor AC, Levy JM, Packer MS, Zhao KT, Liu DR (2017a) Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat Biotechnol 35:371–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA 93:1156–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, Gonzales AP, Li Z, Peterson RT, Yeh JR et al (2015) Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523:481–485

    Article  PubMed  PubMed Central  Google Scholar 

  • Klug A (2010) The discovery of zinc fingers and their development for practical applications in gene regulation and genome manipulation. Q Rev Biophys 43:1–21

    Article  CAS  PubMed  Google Scholar 

  • Klymiuk N, Blutke A, Graf A, Krause S, Burkhardt K, Wuensch A, Krebs S, Kessler B, Zakhartchenko V, Kurome M et al (2013) Dystrophin-deficient pigs provide new insights into the hierarchy of physiological derangements of dystrophic muscle. Hum Mol Genet 22:4368–4382

    Article  CAS  PubMed  Google Scholar 

  • Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurt IC, Zhou R, Iyer S, Miller BR, Langner LM, Grünewald J, Joung JK (2021) CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nat Biotechnol 39:41–46

    Article  CAS  PubMed  Google Scholar 

  • Landrum MJ, Lee JM, Riley GR, Jang W, Rubinstein WS, Church DM, Maglott DR (2014) ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res 42:D980–D985

    Article  CAS  PubMed  Google Scholar 

  • Lee HK, Willi M, Smith HE, Miller SM, Liu DR, Liu C (2019) Simultaneous targeting of linked loci in mouse embryos using base editing. Sci Rep 9:1662

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee K, Uh K, Farrell K (2020) Current progress of genome editing in livestock. Theriogenology 150:229–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, Zhou S, Li C, Cai B, Yu H, Ma B, Huang Y, Ding Y, Liu Y, Ding Q (2019) Base pair editing in goat: nonsense codon introgression into FGF5 results in longer hair. FEBS J 23:4675–4692

    Article  Google Scholar 

  • Li H, Wang G, Hao Z, Zhang G, Qing Y, Liu S, Qing L, Pan W, Chen L, Liu G et al (2016) Generation of biallelic knock-out sheep via gene-editing and somatic cell nuclear transfer. Sci Rep 6:33675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Ouyang H, Yuan H, Li J, Xie Z, Wang K, Yu T, Liu M, Chen X, Tang X (2018b) Site-Specific Fat-1 Knock-In Enables Significant Decrease of n-6PUFAs/n-3PUFAs Ratio in Pigs. G3: Genes, Genomes, Genetics 8:1747–1754

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Li Y, Yang S, Yan M, Ding Y, Tang W, Lou X, Yin Q, Sun Z, Lu L et al (2018a) CRISPR-Cas9-mediated base-editing screening in mice identifies DND1 amino acids that are critical for primordial germ cell development. Nat Cell Biol 20:1315–1325

    Article  CAS  PubMed  Google Scholar 

  • Li WR, Liu CX, Zhang XM, Chen L, Peng XR, He SG, Lin JP, Han B, Wang LQ et al (2017) CRISPR/Cas9-mediated loss of FGF5 function increases wool staple length in sheep. EBS J 284:2764–2773

    CAS  Google Scholar 

  • Li X, Yang Y, Bu L, Guo X, Tang C, Song J, Fan N, Zhao B, Ouyang Z, Liu Z et al (2014) Rosa26-targeted swine models for stable gene over-expression and Cre-mediated lineage tracing. Cell Res 24:501–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang P, Sun H, Sun Y, Zhang X, Xie X, Zhang J, Zhang Z, Chen Y, Ding C, Xiong Y et al (2017) Effective gene editing by high-fidelity base editor 2 in mouse zygotes. Protein Cell 8:601–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang P, Sun H, Zhang X, Xie X, Zhang J, Bai Y, Ouyang X, Zhi S, Xiong Y, Ma W et al (2018) Effective and precise adenine base editing in mouse zygotes. Protein Cell 9:808–813

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang P, Xu Y, Zhang X, Ding C, Huang R, Zhang Z, Lv J, Xie X, Chen Y, Li Y et al (2015) CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 6:363–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lillico SG, Proudfoot C, Carlson DF, Stverakova D, Neil C, Blain C, King TJ, Ritchie WA, Tan W, Mileham AJ et al (2013) Live pigs produced from genome edited zygotes. Sci Rep 3:2847

    Article  PubMed  PubMed Central  Google Scholar 

  • Lim CKW, Gapinske M, Brooks AK, Woods WS, Powell JE, Zeballos CMA, Winter J, Perez-Pinera P, Gaj T (2020) Treatment of a Mouse Model of ALS by In Vivo Base Editing. Mol Ther 28:1177–1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Wang Y, Guo W, Chang B, Liu J, Guo Z, Quan F, Zhang Y (2013) Zinc-finger nickase-mediated insertion of the lysostaphin gene into the beta-casein locus in cloned cows. Nat Commun 4:2565

    Article  PubMed  Google Scholar 

  • Liu Y, Li X, He S, Huang S, Li C, Chen Y, Liu Z, Huang X, Wang X (2020) Efficient generation of mouse models with the prime editing system. Cell Discov 6:27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Chen M, Chen S, Deng J, Song Y, Lai L, Li Z (2018a) Highly efficient RNA-guided base editing in rabbit. Nat Commun 9:2717

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Lu Z, Yang G, Huang S, Li G, Feng S, Liu Y, Li J, Yu W, Zhang Y et al (2018b) Efficient generation of mouse models of human diseases via ABE- and BE-mediated base editing. Nat Commun 9:2338

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma T, Tao J, Yang M, He C, Tian X, Zhang X, Zhang J, Deng S, Feng J, Zhang Z et al (2017) An AANAT/ASMT transgenic animal model constructed with CRISPR/Cas9 system serving as the mammary gland bioreactor to produce melatonin-enriched milk in sheep. J Pineal Res 63:10

    Article  CAS  Google Scholar 

  • Ma Y, Yu L, Zhang X, Xin C, Huang S, Bai L, Chen W, Gao R, Li J, Pan S et al (2018) Highly efficient and precise base editing by engineered dCas9-guide tRNA adenosine deaminase in rats. Cell Discov 4:39

    Article  PubMed  PubMed Central  Google Scholar 

  • Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV (2006) A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct 1:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI, Yakunin AF et al (2010) Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9:467–477

    Article  Google Scholar 

  • Mcfarlane GR, Salvesen HA, Sternberg A, Lilico SG (2019) On-farm livestock genome editing using cutting edge reproductive technologies. Front Sustain Food Syst 3:1–8

    Article  Google Scholar 

  • McNatty KP, Smith P, Moore LG, Reader K, Lun S, Hanrahan JP, Groome NP, Laitinen M, Ritvos O, Juengel JL (2005) Oocyte-expressed genes affecting ovulation rate. Mol Cell Endocrinol 234:57–66

    Article  CAS  PubMed  Google Scholar 

  • Menchaca A, Dos Santos-Neto PC, Cuadro F, Souza-Neves M, Crispo M (2018) From reproductive technologies to genome editing in small ruminants: an embryo's journey. Anim Reprod 15:984–995

    Article  PubMed  PubMed Central  Google Scholar 

  • Menchaca A, Dos Santos-Neto PC, Mulet AP, Crispo M (2020) CRISPR in livestock: From editing to printing. Theriogenology 150:247–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao D, Giassetti MI, Ciccarelli M, Lopez-Biladeau B, Oatley JM (2019) Simplified pipelines for genetic engineering of mammalian embryos by CRISPR-Cas9 electroporation. Biol Reprod 101:177–187

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller JC, Holmes MC, Wang J, Guschin DY, Lee YL, Rupniewski I, Beausejour CM, Waite AJ, Wang NS, Kim KA et al (2007) An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 25:778–785

    Article  CAS  PubMed  Google Scholar 

  • Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ et al (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29:143–148

    Article  CAS  PubMed  Google Scholar 

  • Mol CD, Arvai AS, Sanderson RJ, Slupphaug G, Kavli B, Krokan HE, Mosbaugh DW, Tainer JA (1995) Crystal structure of human uracil-DNA glycosylase in complex with a protein inhibitor: protein mimicry of DNA. Cell 82:701–708

    Article  CAS  PubMed  Google Scholar 

  • Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326:1501

    Article  CAS  PubMed  Google Scholar 

  • Mueller ML, Cole JB, Sonstegard TS, Van Eenennaam AL (2019) Comparison of gene editing versus conventional breeding to introgress the POLLED allele into the US dairy cattle population. J Dairy Sci 102:4215–4226

    Article  CAS  PubMed  Google Scholar 

  • Mulsant P, Lecerf F, Fabre S, Schibler L, Monget P, Lanneluc I, Pisselet C, Riquet J, Monniaux D, Callebaut I et al (2001) Mutation in bone morphogenetic protein receptor-IB is associated with increased ovulation rate in Booroola Mérino ewes. Proc Natl Acad Sci USA 98:5104–5109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Namula Z, Wittayarat M, Hirata M, Hirano T, Nguyen NT, Le QA, Fahrudin M, Tanihara F, Otoi T (2019) Genome mutation after the introduction of the gene editing by electroporation of Cas9 protein (GEEP) system into bovine putative zygotes. In Vitro Cell Dev Biol Anim 55:598–603

    Article  PubMed  Google Scholar 

  • Navarro-Serna S, Vilarino M, Park I, Gadea J, Ross PJ (2020) Livestock Gene Editing by One-step Embryo Manipulation. J Equine Vet 89:103025

    Article  Google Scholar 

  • Ni W, Qiao J, Hu S, Zhao X, Regouski M, Yang M, Polejaeva IA, Chen C (2014) Efficient gene knockout in goats using CRISPR/Cas9 system. PLoS One 9:106718

    Article  Google Scholar 

  • Nishida, K.; Arazoe, T.; Yachie, N.; Banno, S.; Kakimoto, M.; Tabata, M.; Mochizuki, M.; Miyabe,A.; Araki, M.; Hara, K.Y.;et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 2016, 353, aaf8729.

  • Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, Ishitani R, Zhang F, Nureki O (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156:935–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishimasu H, Shi X, Ishiguro S, Hirano S, Okazaki Noda ST, Abudayyeh OO, Gootenberg JS, Mori H, Oura S, Holmes B et al (2018) Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science 361:1259–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu D, Wei HJ, Lin L, George H, Wang T, Lee IH, Zhao HY, Wang Y, Kan Y, Shrock E et al (2017a) Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science 357:1303–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu Y, Ding Y, Wang X, Chen Y (2017b) Multiplex Gene Editing via CRISPR/Cas9 System in Sheep. Bio Protoc 7:e2385

    Article  PubMed  PubMed Central  Google Scholar 

  • Niu Y, Zhao X, Zhou J, Li Y, Huang Y, Cai B, Liu Y, Ding Q, Zhou S, Zhao J et al (2018) Efficient generation of goats with defined point mutation (I397V) in GDF9 through CRISPR/Cas9. Reprod Fertil Dev 30:307–312

    Article  CAS  PubMed  Google Scholar 

  • Pan JS, Lin ZS, Wen JC, Guo JF, Wu XH, Liu YY, Lai WJ, Liang QY, Xie YS, Chen YR et al (2021) Application of the modified cytosine base-editing in the cultured cells of bama minipig. Biotechnol Lett 43:1699–1714

    Article  CAS  PubMed  Google Scholar 

  • Park DS, Yoon M, Kweon J, Jang AH, Kim Y, Choi SC (2017b) Targeted Base Editing via RNA-Guided Cytidine Deaminases in Xenopus laevis Embryos. Mol Cells 40:823–827

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park KE, Kaucher AV, Powell A, Waqas MS, Sandmaier SE, Oatley MJ, Park CH, Tibary A, Donovan DM, Blomberg LA et al (2017a) Generation of germline ablated male pigs by CRISPR/Cas9 editing of the NANOS2 gene. Sci Rep 7:40176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park TS (2023) Gene-editing techniques and their applications in livestock and beyond. Anim Biosci 36:333–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavletich NP, Pabo CO (1991) Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science 252:809–817

    Article  CAS  PubMed  Google Scholar 

  • Peng J, Wang Y, Jiang J, Zhou X, Song L, Wang L, Ding C, Qin J, Liu L, Wang W et al (2015) Production of Human Albumin in Pigs Through CRISPR/Cas9-Mediated Knockin of Human cDNA into Swine Albumin Locus in the Zygotes. Sci Rep 5:16705

    Article  PubMed  PubMed Central  Google Scholar 

  • Perisse IV, Fan Z, Singina GN, White KL, Polejaeva IA (2021) Improvements in Gene Editing Technology Boost Its Applications in Livestock. Front Genet 11:614688

    Article  PubMed  PubMed Central  Google Scholar 

  • Petersen B (2017) Basics of genome editing technology and its application in livestock species. Reprod Domest Anim 52:4–13

    Article  CAS  PubMed  Google Scholar 

  • Petersen B, Frenzel A, Lucas-Hahn A, Herrmann D, Hassel P, Klein S, Ziegler M, Hadeler KG, Niemann H (2016) Efficient production of biallelic GGTA1 knockout pigs by cytoplasmic microinjection of CRISPR/Cas9 into zygotes. Xenotransplantation 23:338–346

    Article  PubMed  Google Scholar 

  • Petersen B, Niemann H (2015) Molecular scissors and their application in genetically modified farm animals. Transgenic Res 24:381–396

    Article  CAS  PubMed  Google Scholar 

  • Proudfoot C, Lillico S, Tait-Burkard C (2019) Genome editing for disease resistance in pigs and chickens. Anim Front 9:6–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Pyzocha NK, Ran FA, Hsu PD, Zhang F (2014) RNA-guided genome editing of mammalian cells. Methods Mol Biol 1114:269–277

    Article  CAS  PubMed  Google Scholar 

  • Qian L, Tang M, Yang J, Wang Q, Cai C, Jiang S, Li H, Jiang K, Gao P, Ma D et al (2015) Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs. Sci Rep 5:14435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin W, Lu X, Liu Y, Bai H, Li S, Lin S (2018) Precise A•T to G•C base editing in the zebrafish genome. BMC Biol 16:139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao S, Fujimura T, Matsunari H, Sakuma T, Nakano K, Watanabe M, Asano Y, Kitagawa E, Yamamoto T, Nagashima H (2016) Efficient modification of the myostatin gene in porcine somatic cells and generation of knockout piglets. Mol Reprod Dev 83:61–70

    Article  CAS  PubMed  Google Scholar 

  • Rees HA, Komor AC, Yeh WH, Caetano-Lopes J, Warman M, Edge ASB, Liu DR (2017) Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery. Nat Commun 8:15790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rees HA, Liu DR (2018) Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet 19:770–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiner G (2016) Genetic resistance - an alternative for controlling PRRS? Porcine Health Manag 2:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Ren B, Liu L, Li S, Ren B, Liu L, Li S, Kuang Y, Wang J, Zhang D, Zhou X et al (2019) Cas9-NG Greatly Expands the Targeting Scope of the Genome-Editing Toolkit by Recognizing NG and Other Atypical PAMs in Rice. Mol Plant 12:1015–1026

    Article  CAS  PubMed  Google Scholar 

  • Reyes LM, Estrada JL, Wang ZY, Blosser RJ, Smith RF, Sidner RA, Paris LL, Blankenship RL, Ray CN, Miner AC et al (2014) Creating class I MHC-null pigs using guide RNA and the Cas9 endonuclease. J Immunol 193:5751–5757

    Article  CAS  PubMed  Google Scholar 

  • Rieblinger B, Sid H, Duda D, Bozoglu T, Klinger R, Schlickenrieder A, Lengyel K, Flisikowski K, Flisikowska T, Simm N et al (2021) Cas9-expressing chickens and pigs as resources for genome editing in livestock. Proc Natl Acad Sci USA 118:e2022562118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossidis AC, Stratigis AC, Chadwick AC, Hartman HA, Ahn NJ, Li H, Singh K, Coons BE, Li L, Lv W et al (2018) In utero CRISPR-mediated therapeutic editing of metabolic genes. Nat Med 24:1513–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rousseau J, Mbakam CH, Guyon A, Tremblay G, Begin FG, Tremblay JP (2020) Specific mutations in genes responsible for Alzheimer and for Duchenne Muscular Dystrophy introduced by Base editing and PRIME editing. bioRxiv. https://doi.org/10.1101/2020.07.31.230565

  • Ruan J, Xu J, Chen-Tsai RY, Li K (2017) Genome editing in livestock: Are we ready for a revolution in animal breeding industry? Transgenic Res 26:715–726

    Article  CAS  PubMed  Google Scholar 

  • Ryu SM, Koo T, Kim K, Lim K, Baek G, Kim ST, Kim HS, Kim DE, Lee H, Chung E et al (2018) Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat Biotechnol 36:536–539

    Article  CAS  PubMed  Google Scholar 

  • Sasaguri H, Nagata K, Sekiguchi M, Fujioka R, Matsuba Y, Hashimoto S, Sato K, Kurup D, Yokota T, Saido TC (2018) Introduction of pathogenic mutations into the mouse Psen1 gene by Base Editor and Target-AID. Nat Commun 9:2892

    Article  PubMed  PubMed Central  Google Scholar 

  • Schene IF, Joore IP, Oka R, Mokry M, van Vugt AHM, van Boxtel R, van der Doef HPJ, van der Laan LJW, Verstegen MMA, van Hasselt PM et al (2020) Prime editing for functional repair in patient-derived disease models. Nat Commun 11:5352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholefield J, Harrison PT (2021) Prime editing - an update on the field. Gene Ther 28:396–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shanthalingam S, Tibary A, Beever JE, Kasinathan P, Brown WCS (2016) SrikumaranPrecise gene editing paves the way for derivation of Mannheimia haemolytica leukotoxin-resistant cattle. Proc Natl Acad Sci USA 113:13186–13190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheets TP, Park CH, Park KE, Powell A, Donovan DM, Telugu BP (2016) Somatic Cell Nuclear Transfer Followed by CRIPSR/Cas9 Microinjection Results in Highly Efficient Genome Editing in Cloned Pigs. Int J Mol Sci 17:2031

    Article  PubMed  PubMed Central  Google Scholar 

  • Slaymaker IM, Gaudelli NM (2021) Engineering Cas9 for human genome editing. Curr Opin Struct Biol 69:86–98

    Article  CAS  PubMed  Google Scholar 

  • Söllner JH, Mettenleiter TC, Petersen B (1996) Genome Editing Strategies to Protect Livestock from Viral Infections. Viruses 2021:13

    Google Scholar 

  • Song CQ, Jiang T, Richter M, Rhym LH, Koblan LW, Zafra MP, Schatoff EM, Doman JL, Cao Y, Dow LE et al (2020) Adenine base editing in an adult mouse model of tyrosinaemia. Nat Biomed Eng 4:125–130

    Article  CAS  PubMed  Google Scholar 

  • Song R, Wang Y, Zheng Q, Yao J, Cao C, Wang Y, Zhao J (2022) One-step base editing in multiple genes by direct embryo injection for pig trait improvement. Sci China Life Sci 65:739–752

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Cui C, Zhu H, Zhao F, Jin Y (2015) Expression, purification and characterization of zinc-finger nuclease to knockout the goat beta-lactoglobulin gene. Protein Expr Purif 112:1–7

    Article  CAS  PubMed  Google Scholar 

  • Stern A, Keren L, Wurtzel O, Amitai G, Sorek R (2010) Self-targeting by CRISPR: gene regulation or autoimmunity? Trends Genet 26:335–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sternberg SH, LaFrance B, Kaplan M, Doudna JA (2015) Conformational control of DNA target cleavage by CRISPR-Cas9. Nature 527:110–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun N, Bao Z, Xiong X, Zhao H (2014) SunnyTALEN: a second-generation TALEN system for human genome editing. Biotechnol Bioeng 111:683–691

    Article  CAS  PubMed  Google Scholar 

  • Sürün D, Schneider A, Mircetic J, Neumann K, Lansing F, Paszkowski-Rogacz M, Hänchen V, Lee-Kirsch MA, Buchholz F (2020) Efficient Generation and Correction of Mutations in Human iPS Cells Utilizing mRNAs of CRISPR Base Editors and Prime Editors. Genes (Basel) 11:511

    Article  PubMed  Google Scholar 

  • Tan W, Carlson DF, Lancto CA, Garbe JR, Webster DA, Hackett PB, Fahrenkrug SC (2013) Efficient nonmeiotic allele introgression in livestock using custom endonucleases. Proc Natl Acad Sci USA 110:16526–16531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka S, Yoshioka S, Nishida K, Hosokawa H, Kakizuka A, Maegawa S (2018) In vivo targeted single-nucleotide editing in zebrafish. Sci Rep 8:11423

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas KR, Capecchi MR (1986) Introduction of homologous DNA sequences into mammalian cells induces mutations in the cognate gene. Nature 324:34–38

    Article  CAS  PubMed  Google Scholar 

  • Tian H, Luo J, Zhang Z, Wu J, Zhang T, Busato S, Huang L, Song N, Bionaz M (2018a) CRISPR/Cas9-mediated Stearoyl-CoA Desaturase 1 (SCD1) Deficiency Affects Fatty Acid Metabolism in Goat Mammary Epithelial Cells. J Agric Food Chem 66:10041–10052

    Article  CAS  PubMed  Google Scholar 

  • Tian H, Niu H, Luo J, Yao W, Chen X, Wu J, Geng Y, Gao W, Lei A, Gao Z et al (2015) Knockout of Stearoyl-CoA Desaturase 1 Decreased Milk Fat and Unsaturated Fatty Acid Contents of the Goat Model Generated by CRISPR/Cas9. J Agric Food Chem 70:4030–4043

    Article  Google Scholar 

  • Tian X, Lv D, Ma T, Deng S, Yang M, Song Y, Zhang X, Zhang J, Fu J, Lian Z et al (2018b) AANAT transgenic sheep generated via OPS vitrified-microinjected pronuclear embryos and reproduction efficiency of the transgenic offspring. Peer J 6:e5420

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Eenennaam AL (2019) Application of genome editing in farm animals: cattle. Transgenic Res 28:93–100

    Article  PubMed  Google Scholar 

  • Vassena R, Heindryckx B, Peco R, Pennings G, Raya A, Sermon K, Veiga A (2016) Genome engineering through CRISPR/Cas9 technology in the human germline and pluripotent stem cells. Hum Reprod Update 22:411–419

    Article  CAS  PubMed  Google Scholar 

  • Walton RT, Christie KA, Whittaker MN, Kleinstiver BP (2018) Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science 368:290–296

    Article  Google Scholar 

  • Wang D, Tai PWL, Gao G (2019) Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov 18:358–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang K, Jin Q, Ruan D, Yang Y, Liu Q, Wu H, Zhou Z, Ouyang Z, Liu Z, Zhao Y et al (2017) Cre-dependent Cas9-expressing pigs enable efficient in vivo genome editing. Genome Res 27:2061–2071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang K, Ouyang H, Xie Z, Yao C, Guo N, Li M, Jiao H, Pang D (2015a) Efficient Generation of Myostatin Mutations in Pigs Using the CRISPR/Cas9 System. Sci Rep 5:16623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Qu Z, Huang Q, Zhang J, Lin S, Yang Y, Meng F, Li J, Zhang K (2022) Application of Gene Editing Technology in Resistance Breeding of Livestock. Life (Basel) 12:1070

    PubMed  Google Scholar 

  • Wang X, Cai B, Zhou J, Zhu H, Niu Y, Ma B, Yu H, Lei A, Yan H, Shen Q et al (2016b) Disruption of FGF5 in Cashmere Goats Using CRISPR/Cas9 Results in More Secondary Hair Follicles and Longer Fibers. PLoS One 11:e0164640

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Niu Y, Zhou J, Yu H, Kou Q, Lei A, Zhao X, Yan H, Cai B, Shen Q et al (2016a) Multiplex gene editing via CRISPR/Cas9 exhibits desirable muscle hypertrophy without detectable off-target effects in sheep. Sci Rep 6:32271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Yu H, Lei A, Zhou J, Zeng W, Zhu H, Dong Z, Niu Y, Shi B, Cai B et al (2015b) Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system. Sci Rep 5:13878

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Bi D, Qin G, Song R, Yao J, Cao C, Zheng Q, Hou N, Wang Y, Zhao J (2020) Cytosine Base Editor (hA3A-BE3-NG)-Mediated Multiple Gene Editing for Pyramid Breeding in Pigs. Front Genet 11:592623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang ZY, Burlak C, Estrada JL, Li P, Tector MF, Tector AJ (2014) Erythrocytes from GGTA1/CMAH knockout pigs: implications for xenotransfusion and testing in non-human primates. Xenotransplantation 21:376–384

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei Y, Chesne MT, Terns RM, Terns MP (2015) Sequences spanning the leader-repeat junction mediate CRISPR adaptation to phage in Streptococcus thermophilus. Nucleic Acids Res 43:1749–1758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitworth KM, Rowland RR, Ewen CL, Trible BR, Kerrigan MA, Cino-Ozuna AG, Samuel MS, Lightner JE, McLaren DG (2016) Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nat Biotechnol 34:20–22

    Article  CAS  PubMed  Google Scholar 

  • Whyte JJ, Prather RS (2012) Cell Biology Symposium: Zinc finger nucleases to create custom-designed modifications in the swine (Sus scrofa) genome. J Anim Sci 90:1111–1117

    Article  CAS  PubMed  Google Scholar 

  • Whyte JJ, Zhao J, Wells KD, Samuel MS, Whitworth KM, Walters EM, Laughlin MH, Prather RS (2011) Gene targeting with zinc finger nucleases to produce cloned eGFP knockout pigs. Mol Reprod Dev 78:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams DK, Pinzón C, Huggins S, Pryor JH, Falck A, Herman F, Oldeschulte J, Chavez MB, Foster BL, White SH et al (2018) Genetic engineering a large animal model of human hypophosphatasia in sheep. Sci Rep 8:16945

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu H, Wang Y, Zhang Y, Yang M, Lv J, Liu J, Zhang Y (2015b) TALE nickase-mediated SP110 knockin endows cattle with increased resistance to tuberculosis. Proc Natl Acad Sci USA 112:E1530–E1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Vilarino M, Suzuki K, Okamura D, Bogliotti YS, Park I, Rowe J, McNabb B, Ross PJ, Belmonte JCI (2017) CRISPR-Cas9 mediated one-step disabling of pancreatogenesis in pigs. Sci Rep 7:10487

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu M, Wei C, Lian Z, Liu R, Zhu C, Wang H, Cao J, Shen Y, Zhao F, Zhang L et al (2016) Rosa26-targeted sheep gene knock-in via CRISPR-Cas9 system. Sci Rep 6:24360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Liang D, Wang Y, Bai M, Tang W, Bao S, Yan Z, Li D, Li J (2013) Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell 13:659–662

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Zhou H, Fan X, Zhang Y, Zhang M, Wang Y, Xie Z, Bai M, Yin Q, Liang D et al (2015a) Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells. Cell Res 25:67–79

    Article  CAS  PubMed  Google Scholar 

  • Xiao A, Hu YY, Wang WY, Yang ZP, Wang ZX, Huang P, Tong XJ, Zhang B, Lin S (2011) Progress in zinc finger nuclease engineering for targeted genome modification. Yi Chuan 33:665–683

    Article  CAS  PubMed  Google Scholar 

  • Xie J, Ge W, Li N, Liu Q, Chen F, Yang X, Huang X, Ouyang Z, Zhang Q, Zhao Y et al (2019) Efficient base editing for multiple genes and loci in pigs using base editors. Nat Commun 10:2852

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiong K, Li S, Zhang H, Cui Y, Yu D, Li Y, Sun W, Fu Y, Teng Y, Liu Z et al (2013) Targeted editing of goat genome with modular-assembly zinc finger nucleases based on activity prediction by computational molecular modeling. Mol Biol Rep 40:4251–4256

    Article  CAS  PubMed  Google Scholar 

  • Xu K, Zhou Y, Mu Y, Liu Z, Hou S, Xiong Y, Fang L, Ge C, Wei Y, Zhang X et al (2020b) CD163 and pAPN double-knockout pigs are resistant to PRRSV and TGEV and exhibit decreased susceptibility to PDCoV while maintaining normal production performance. Elife 9:e57132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu R, Li J, Liu X, Shan T, Qin R, Wei P (2020a) Development of plant primeediting systems for precise genome editing. Plant Commun 1:100043

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Kuang Y, Ren B, Yan D, Yan F, Spetz C, Sun W, Wang G, Zhou X, Zhou H (2021) SpRY greatly expands the genome editing scope in rice with highly flexible PAM recognition. Genome Biol 22:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan S, Tu Z, Liu Z, Fan N, Yang H, Yang S, Yang W, Zhao Y, Ouyang Z, Lai C et al (2018) A Huntingtin Knockin Pig Model Recapitulates Features of Selective Neurodegeneration in Huntington's Disease. Cell 173:989–1002.e13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang C, Tong H, Ma X, Du W, Liu D, Yang Y, Yan Y (2014) Myostatin knockout in bovine fetal fibroblasts by using TALEN. Yi Chuan 36:685–690

    CAS  PubMed  Google Scholar 

  • Yang D, Yang H, Li W, Zhao B, Ouyang Z, Liu Z, Zhao Y, Fan N, Song J, Tian J et al (2011) Generation of PPARγ mono-allelic knockout pigs via zinc-finger nucleases and nuclear transfer cloning. Cell Res 21:979–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Wu Z (2018) Genome Editing of Pigs for Agriculture and Biomedicine. Front Genet 9:360

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang L, Zhang X, Wang L, Yin S, Zhu B, Xie L, Duan Q, Hu H, Zheng R, Wei Y et al (2018) Increasing targeting scope of adenosine base editors in mouse and rat embryos through fusion of TadA deaminase with Cas9 variants. Protein Cell 9:814–819

    Article  PubMed  PubMed Central  Google Scholar 

  • Yeh WH, Chiang H, Rees HA, Edge ASB, Liu DR (2018) In vivo base editing of post-mitotic sensory cells. Nat Commun 9:2184

    Article  PubMed  PubMed Central  Google Scholar 

  • Yeh WH, Shubina-Oleinik O, Levy JM, Pan B, Newby GA, Wornow M, Burt R, Chen JC, Holt JR, Liu DR (2020) In vivo base editing restores sensory transduction and transiently improves auditory function in a mouse model of recessive deafness. Transl Med 12:eaay9101

    Article  Google Scholar 

  • Yin S, Yu S, Li C, Wong P, Chang B, Xiao F, Kang SC, Yan H, Xiao G, Grassi J et al (2006) Prion proteins with insertion mutations have altered N-terminal conformation and increased ligand binding activity and are more susceptible to oxidative attack. J Biol Chem 281:10698–11705

    Article  CAS  PubMed  Google Scholar 

  • Yockey LJ, Jurado KA, Arora N, Millet A, Rakib T, Milano KM, Hastings AK, Fikrig E, Kong Y, Horvath TL et al (2018) Type I interferons instigate fetal demise after Zika virus infection. Sci Immunol 3:eaao1680

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu B, Lu R, Yuan Y, Zhang T, Song S, Qi Z, Shao B, Zhu M, Mi F, Cheng Y (2016) Efficient TALEN-mediated myostatin gene editing in goats. BMC Dev Biol 16:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu S, Luo J, Song Z, Ding F, Dai Y, Li N (2011) Highly efficient modification of beta-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle. Cell Res 21:1638–1640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan H, Yu T, Wang L, Yang L, Zhang Y, Liu H, Li M, Tang X, Liu Z, Li Z et al (2020) Efficient base editing by RNA-guided cytidine base editors (CBEs) in pigs. Cell Mol Life Sci 77:719–733

    Article  CAS  PubMed  Google Scholar 

  • Yuan M, Zhang J, Gao Y (2015) HMEJ-based safe-harbor genome editing enables efficient generation of cattle with increased resistance to tuberculosis. J Biol Chem 296:100497

    Article  Google Scholar 

  • Yuan YG, Song SZ, Zhu MM, He ZY, Lu R, Zhang T, Mi F, Wang JY, Cheng Y (2017) Human lactoferrin efficiently targeted into caprine beta-lactoglobulin locus with transcription activator-like effector nucleases. Asian Australas J Anim Sci 30:1175–1182

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Pan H, Zhou H, Wei Y, Ying W, Li S, Wang G, Li C, Ren Y, Li G et al (2018b) Simultaneous zygotic inactivation of multiple genes in mouse through CRISPR/Cas9-mediated base editing. Development 145:dev168906

    Article  PubMed  Google Scholar 

  • Zhang J, Cui ML, Nie YW, Dai B, Li FR, Liu DJ, Liang H, Cang M (2018c) CRISPR/Cas9-mediated specific integration of fat-1 at the goat MSTN locus. FEBS J 285:2828–2839

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Liu J, Yang W, Cui M, Dai B, Dong Y, Yang J, Zhang X, Liu D, Liang H et al (2019c) Comparison of gene editing efficiencies of CRISPR/Cas9 and TALEN for generation of MSTN knock-out cashmere goats. Theriogenology 132:1–11

    Article  PubMed  Google Scholar 

  • Zhang M, Eshraghian EA, Jammal OA, Zhang Z, Zhu X (2021) CRISPR technology: The engine that drives cancer therapy. Biomed Pharmacother 133:111007

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Li Y, Jia K, Xu X, Li Y, Zhao Y, Zhang X, Zhang J, Liu G, Deng S et al (2018a) Crosstalk between androgen and Wnt/β-catenin leads to changes of wool density in FGF5-knockout sheep. Cell Death Dis 11:407

    Article  Google Scholar 

  • Zhang W, Aida T, Del Rosario RCH, Ding C, Zhang X, Baloch Z, Huang Y, Tang Y, Li D, Lu H et al (2020) Multiplex precise base editing in cynomolgus monkeys. Nat Commun 11:2325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Chen S, Yoo S, Chakrabarti S, Zhang T, Ke T, Oberti C, Yong SL, Fang F, Li L et al (2008) Mutation in nuclear pore component NUP155 leads to atrial fibrillation and early sudden cardiac death. Cell 135:1017–1027

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Li W, Liu C, Peng X, Lin J, He S, Li X, Han B, Zhang N, Wu Y et al (2017b) Alteration of sheep coat color pattern by disruption of ASIP gene via CRISPR Cas9. Sci Rep 7:8149

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Qin W, Lu X, Xu J, Huang H, Bai H, Li S, Lin S (2017a) Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system. Nat Commun 8:118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Wang Y, Wang X, Ji Y, Cheng S, Wang M, Zhang C, Yu X, Zhao R, Zhang W et al (2019b) Acetyl-coenzyme A acyltransferase 2 promote the differentiation of sheep precursor adipocytes into adipocytes. J Cell Biochem 120:8021–8031

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Wang Y, Yulin B, Tang B, Wang M, Zhang C, Zhang W, Jin J, Li T, Zhao R et al (2019a) CRISPR/Cas9-mediated sheep MSTN gene knockout and promote sSMSCs differentiation. J Cell Biochem 120:1794–1806

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Lai L, Ji W, Zhou Q (2019) Genome editing in large animals: current status and future prospects. Natl Sci Rev 6:402–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou S, Cai B, He C, Wang Y, Ding Q, Liu J, Liu Y, Ding Y, Zhao X, Li G (2019) Programmable Base Editing of the Sheep Genome Revealed No Genome-Wide Off-Target Mutations. Front Genet 10:215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou S, Ding Y, Liu J, Liu Y, Zhao X, Li G, Zhang C, Li C, Wang Y, Kalds P (2020) Highly efficient generation of sheep with a defined FecBB mutation via adenine base editing. Genet Sel Evol 52:35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou S, Yu H, Zhao X, Cai B, Ding Q, Huang Y, Li Y, Li Y, Niu Y, Lei A et al (2018) Generation of gene-edited sheep with a defined Booroola fecundity gene (FecBB) mutation in bone morphogenetic protein receptor type 1B (BMPR1B) via clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) 9. Reprod Fertil Dev 30:1616–1621

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Wan Y, Guo R, Deng M, Deng K, Wang Z, Zhang Y, Wang F (2017) Generation of beta-lactoglobulin knock-out goats using CRISPR/Cas9. PLoS One 12:e0186056

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu XX, Pan JS, Lin T, Yang YC, Huang QY, Yang SP, Qu ZX, Lin ZS, Wen JC, Yan AF et al (2022) Adenine base-editing-mediated exon skipping induces gene knockout in cultured pig cells. Biotechnol Lett 44:59–76

    Article  CAS  PubMed  Google Scholar 

Download references

Institutional review board statement

Not applicable.

Funding

This project was funded by Development of a new precise cytosine base editor (JBGS〔2021〕025), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the 111 Project D18007, Yangzhou City and Yangzhou University Corporationcorporation (YZ2023205).

Author information

Authors and Affiliations

Authors

Contributions

Writing-original draft preparation, S.Z.L., L.L., M.Y.L., T.Z., S.S.C.; review and editing, Y.G.Y., M.F.; visualization, supervision, Y.G.Y. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Yu-Guo Yuan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, YG., Liu, SZ., Farhab, M. et al. Genome editing: An insight into disease resistance, production efficiency, and biomedical applications in livestock. Funct Integr Genomics 24, 81 (2024). https://doi.org/10.1007/s10142-024-01364-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10142-024-01364-5

Keywords

Navigation