Skip to main content
Log in

Impact of Thermal Stress on Kidney-Specific Gene Expression in Farmed Regional and Imported Rainbow Trout

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Seasonal water temperatures can be stressful for fish in aquaculture and can therefore negatively influence their welfare. Although the kidney is the crucial organ associated with the primary stress response, knowledge about the stress-modulated kidney transcriptome in salmonids is limited. In the present study, we used a comparative microarray approach to characterize the general gene expression profiles of rainbow trout trunk kidney after a 2-week acclimation to mild heat (23 °C) and cold stress (8 °C). Hypothesizing that local adaptation influences stress performance, we aimed to identify differences in the temperature-induced gene expression in the regional trout strain BORN, in addition to a common imported strain. Moderate temperature challenge provoked typical stress response clusters, including heat-shock proteins or cold-inducible factors, in addition to altered energy metabolism in trout kidney. Mild cold, in particular, enhanced renal protein degradation processes, as well as mRNA and protein synthesis, while it also triggered fatty acid biosynthesis. Mild heat led to cytoskeleton-stabilizing processes and might have facilitated cell damage and infection. Furthermore, both breeding lines used different strategies for energy provision, cellular defense, and cell death/survival pathways. As a main finding, the genes involved in energy provision showed generally higher transcript levels at both temperatures in BORN trout compared to imported trout, indicating adjusted metabolic rates under local environmental conditions. Altogether, this study provides a general overview of stress-induced transcriptional patterns in rainbow trout trunk kidney, in addition to identifying genes and networks that contribute to the robustness of the BORN strain. Our analyses suggest SERPINH1 and CIRBP as general marker genes for heat stress and cold stress in trout, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abele D, Puntarulo S (2004) Formation of reactive species and induction of antioxidant defence systems in polar and temperate marine invertebrates and fish. Comp Biochem Physiol A Mol Integr Physiol 138:405–415

    Article  PubMed  Google Scholar 

  • Anders E (1986) Stand der Züchtung und Reproduktion brackwasseradaptierter Regenbogenforellenbestände im Küstenbereich der DDR. Fischerei-Forschung 72

  • Bailey GS, Poulter RTM, Stockwell PA (1978) Gene duplication in tetraploid fish: model for gene silencing at unlinked duplicated loci. Proc Natl Acad Sci U S A 75:5575–5579

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barton BA (2002) Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integr Comp Biol 42:517–525

    Article  CAS  PubMed  Google Scholar 

  • Bly JE, Clem LW (1992) Temperature and teleost immune functions. Fish Shellfish Immunol 2:159–171

    Article  Google Scholar 

  • Bowden TJ (2008) Modulation of the immune system of fish by their environment. Fish Shellfish Immunol 25:373–383

    Article  CAS  PubMed  Google Scholar 

  • Bowers RM, Lapatra SE, Dhar AK (2008) Detection and quantitation of infectious pancreatic necrosis virus by real-time reverse transcriptase-polymerase chain reaction using lethal and non-lethal tissue sampling. J Virol Methods 147:226–234

    Article  CAS  PubMed  Google Scholar 

  • Brett JR (1971) Energetic responses of salmon to temperature. A study of some thermal relations in the physiology and freshwater ecology of sockeye salmon (Oncorhynchus nerkd). Integr Comp Biol 11:99–113

    Article  Google Scholar 

  • Buckley BA, Gracey AY, Somero GN (2006) The cellular response to heat stress in the goby Gillichthys mirabilis: a cDNA microarray and protein-level analysis. J Exp Biol 209:2660–2677

    Article  CAS  PubMed  Google Scholar 

  • Chadzinska M, Baginski P, Kolaczkowska E et al (2008) Expression profiles of matrix metalloproteinase 9 in teleost fish provide evidence for its active role in initiation and resolution of inflammation. Immunology 125:601–610

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clarke A, Fraser KPP (2004) Why does metabolism scale with temperature? Funct Ecol 18:243–251

    Article  Google Scholar 

  • Conde-Sieira M, Alvarez R, López-Patiño MA et al (2013) ACTH-stimulated cortisol release from head kidney of rainbow trout is modulated by glucose concentration. J Exp Biol 216:554–567

    Article  CAS  PubMed  Google Scholar 

  • De Melo IS, Iglesias C, Benítez-Rondán A et al (2009) NOA36/ZNF330 is a conserved cystein-rich protein with proapoptotic activity in human cells. Biochim Biophys Acta 1793:1876–1885

    Article  PubMed  Google Scholar 

  • Dias CL, Ala-Nissila T, Wong-ekkabut J et al (2010) The hydrophobic effect and its role in cold denaturation. Cryobiology 60:91–99

    Article  CAS  PubMed  Google Scholar 

  • Donaldson MR, Cooke SJ, Patterson DA, Macdonald JS (2008) Cold shock and fish. J Fish Biol 73:1491–1530

    Article  Google Scholar 

  • Engelund MB, Madsen SS (2011) The role of aquaporins in the kidney of euryhaline teleosts. Front Physiol. doi:10.3389/fphys.2010.00013

    Google Scholar 

  • Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61(243–82):243–282

    Article  CAS  PubMed  Google Scholar 

  • Fry FEJ (1971) The effect of environmental factors on the physiology of fish. Fish Physiol 6:1–98

    Article  CAS  Google Scholar 

  • Gracey AY, Fraser EJ, Li W et al (2004) Coping with cold: an integrative, multitissue analysis of the transcriptome of a poikilothermic vertebrate. Proc Natl Acad Sci U S A 101:16970–16975

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hahn GM, Shiu EC (1985) Protein synthesis, thermotolerance and step down heating. Int J Radiat Oncol Biol Phys 11(1):159–164

  • Hazel JR (1995) Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation? Annu Rev Physiol 57:19–42

    Article  CAS  PubMed  Google Scholar 

  • Heise K, Estevez MS, Puntarulo S et al (2007) Effects of seasonal and latitudinal cold on oxidative stress parameters and activation of hypoxia inducible factor (HIF-1) in zoarcid fish. J Comp Physiol B 177:765–777

    Article  CAS  PubMed  Google Scholar 

  • Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  CAS  PubMed  Google Scholar 

  • Hochachka PW, Somero NG (2002) Biochemical adaptation: mechanism and process in physiological evolution. Oxford University Press, New York, pp 1–466

    Google Scholar 

  • Hori TS, Gamperl AK, Afonso LO et al (2010) Heat-shock responsive genes identified and validated in Atlantic cod (Gadus morhua) liver, head kidney and skeletal muscle using genomic techniques. BMC Genomics 11:72

    Article  PubMed Central  PubMed  Google Scholar 

  • Hurley IA, Mueller RL, Dunn KA, Schmidt EJ, Friedman M, Ho RK, Prince VE, Yang Z, Thomas MG, Coates MI (2007) A new timescale for ray-finned fish evolution. Proc R Soc A Biol Sci 274:489–498

    Article  CAS  Google Scholar 

  • Hwang K-C, Ok D-W, Hong J-C et al (2003) Cloning, sequencing, and characterization of the murine nm23-M5 gene during mouse spermatogenesis and spermiogenesis. Biochem Biophys Res Commun 306:198–207

    Article  CAS  PubMed  Google Scholar 

  • Jensen LE, Whitehead AS (2003) Pellino3, a novel member of the Pellino protein family, promotes activation of c-Jun and Elk-1 and may act as a scaffolding protein. J Immunol 171:1500–1506

    Article  CAS  PubMed  Google Scholar 

  • Kassahn KS, Caley MJ, Ward AC et al (2007) Heterologous microarray experiments used to identify the early gene response to heat stress in a coral reef fish. Mol Ecol 16:1749–1763

    Article  CAS  PubMed  Google Scholar 

  • Kemp P, Smith MW (1970) Effect of temperature acclimatization on the fatty acid composition of goldfish intestinal lipids. Biochem J 117:9–15

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Khan S, Cleveland RP, Koch CJ, Schelling JR (1999) Hypoxia induces renal tubular epithelial cell apoptosis in chronic renal disease. Lab Invest 79:1089–1099

    CAS  PubMed  Google Scholar 

  • Korytář T, Verleih M, Rebl A, Anders E, Köllner B, Goldammer T (2009) Investigation of genomic, transcriptomic and functional differences of two rainbow trout strains with different resistance against infections—the DIREFO project. 11th Congress of the ISDCI, Prague, Czech Republic, http://lib.congressprague.cz/isdci2009/:78

  • Krasnov A, Koskinen H, Pehkonen P et al (2005) Gene expression in the brain and kidney of rainbow trout in response to handling stress. BMC Genomics 6:3

    Article  PubMed Central  PubMed  Google Scholar 

  • Krasnov A, Timmerhaus G, Afanasyev S, Jørgensen SM (2011) Development and assessment of oligonucleotide microarrays for Atlantic salmon (Salmo salar L.). Comp Biochem Physiol Part D Genomics Proteomics 6:31–38

    Article  PubMed  Google Scholar 

  • Kueltz D (2005) Molecular and evolutionary basis of the cellular stress response. Annu Rev Physiol 67:225–257

    Article  CAS  Google Scholar 

  • Leatherland JF, Li M, Barkataki S (2010) Stressors, glucocorticoids and ovarian function in teleosts. J Fish Biol 76:86–111

    Article  CAS  PubMed  Google Scholar 

  • Lewis JM, Hori TS, Rise ML et al (2010) Transcriptome responses to heat stress in the nucleated red blood cells of the rainbow trout (Oncorhynchus mykiss). Physiol Genomics 42:361–373

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lushchak VI, Bagnyukova TV (2006) Temperature increase results in oxidative stress in goldfish tissues. 1. Indices of oxidative stress. Comp Biochem Physiol C Toxicol Pharmacol 143:30–35

    Article  PubMed  Google Scholar 

  • Mao P, Hever MP, Niemaszyk LM et al (2011) Serine/threonine kinase 17A is a novel p53 target gene and modulator of cisplatin toxicity and reactive oxygen species in testicular cancer cells. J Biol Chem 286:19381–19391

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marshall W, Grosell M (2006) Ion transport, osmoregulation and acid-base balance. In: Evans D, Caiborne J (eds) The Physiology of Fishes. CRC Press, Boca Raton, pp 177–230

    Google Scholar 

  • Masuda H, Tanaka K, Takagi M et al (1996) Molecular cloning and characterization of human non-smooth muscle calponin. J Biochem 120:415–424

    Article  CAS  PubMed  Google Scholar 

  • Moore LJ, Somamoto T, Lie KK et al (2005) Characterisation of salmon and trout CD8alpha and CD8beta. Mol Immunol 42:1225–1234

    Article  CAS  PubMed  Google Scholar 

  • Nakai A, Satoh M, Hirayoshi K et al (1992) Involvement of the stress protein HSP47 in procollagen processing in the endoplasmic reticulum. J Cell Biol 117:903–914

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Ohigashi H, Masuda S et al (2000) Redox regulation of glutathione S-transferase induction by benzyl isothiocyanate: correlation of enzyme induction with the formation of reactive oxygen intermediates. Cancer Res 60:219–225

    CAS  PubMed  Google Scholar 

  • Okumura F, Matsunaga Y, Katayama Y et al (2010) TRIM8 modulates STAT3 activity through negative regulation of PIAS3. J Cell Sci 123:2238–2245

    Article  CAS  PubMed  Google Scholar 

  • Patel MS, Roche TE (1990) Molecular biology and biochemistry of pyruvate dehydrogenase complexes. FASEB J 4:3224–3233

    CAS  PubMed  Google Scholar 

  • Pérez de Obanos MP, López-Zabalza MJ, Arriazu E et al (2007) Reactive oxygen species (ROS) mediate the effects of leucine on translation regulation and type I collagen production in hepatic stellate cells. Biochim Biophys Acta 1773:1681–1688

    Article  PubMed  Google Scholar 

  • Pickering AD (1981) Stress and fish. Academic Press, New York

    Google Scholar 

  • Pockley AG (2003) Heat shock proteins as regulators of the immune response. Lancet 362:469–476

    Article  CAS  PubMed  Google Scholar 

  • Podrabsky JE, Somero GN (2004) Changes in gene expression associated with acclimation to constant temperatures and fluctuating daily temperatures in an annual killifish Austrofundulus limnaeus. J Exp Biol 207:2237–2254

    Article  CAS  PubMed  Google Scholar 

  • Quinn NL, McGowan CR, Cooper GA et al (2011) Identification of genes associated with heat tolerance in Arctic charr exposed to acute thermal stress. Physiol Genomics 43:685–696

    Article  CAS  PubMed  Google Scholar 

  • Rashid N, Imanaka H, Fukui T et al (2004) Presence of a novel phosphopentomutase and a 2-deoxyribose 5-phosphate aldolase reveals a metabolic link between pentoses and central carbon metabolism in the hyperthermophilic archaeon Thermococcus kodakaraensis. J Bacteriol 186:4185–4191

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rebl A, Korytář T, Köbis JM et al (2014) Transcriptome profiling reveals insight into distinct immune responses to Aeromonas salmonicida in gill of two rainbow trout strains. Mar Biotechnol (NY) 16:333–348

    Article  CAS  Google Scholar 

  • Rebl A, Verleih M, Köbis JM et al (2013) Transcriptome profiling of gill tissue in regionally bred and globally farmed rainbow trout strains reveals different strategies for coping with thermal stress. Mar Biotechnol (NY) 15:445–460

    Article  CAS  Google Scholar 

  • Rebl A, Verleih M, Köllner B et al (2012) Duplicated NELL2 genes show different expression patterns in two rainbow trout strains after temperature and pathogen challenge. Comp Biochem Physiol B Biochem Mol Biol 163(1):65–73

  • Reid SG, Bernier NJ, Perry SF (1998) The adrenergic stress response in fish: control of catecholamine storage and release. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 120:1–27

    Article  CAS  PubMed  Google Scholar 

  • Roberts RJ, Agius C, Saliba C et al (2010) Heat shock proteins (chaperones) in fish and shellfish and their potential role in relation to fish health: a review. J Fish Dis 33:789–801

    Article  CAS  PubMed  Google Scholar 

  • Russotti G, Brieva TA, Toner M, Yarmush ML (1996) Induction of tolerance to hypothermia by previous heat shock using human fibroblasts in culture. Cryobiology 33(5):567–580

  • Ryoo HD, Gorenc T, Steller H (2004) Apoptotic cells can induce compensatory cell proliferation through the JNK and the Wingless signaling pathways. Dev Cell 7:491–501

    Article  CAS  PubMed  Google Scholar 

  • Satoh M, Hirayoshi K, Yokota S et al (1996) Intracellular interaction of collagen-specific stress protein HSP47 with newly synthesized procollagen. J Cell Biol 133:469–483

    Article  CAS  PubMed  Google Scholar 

  • Schild-Poulter C, Shih A, Yarymowich NC, Haché RJG (2003) Down-regulation of histone H2B by DNA-dependent protein kinase in response to DNA damage through modulation of octamer transcription factor 1. Cancer Res 63:7197–205

    CAS  PubMed  Google Scholar 

  • Schmidt-Posthaus H, Steiner P, Müller B, Casanova-Nakayama A (2013) Complex interaction between proliferative kidney disease, water temperature and concurrent nematode infection in brown trout. Dis Aquat Organ 104:23–34

    Article  CAS  PubMed  Google Scholar 

  • Segade F, Hurlé B, Claudio E et al (1996) Identification of an additional member of the cytochrome c oxidase subunit VIIa family of proteins. J Biol Chem 271:12343–12349

    Article  CAS  PubMed  Google Scholar 

  • Sharp VA, Millerb D, Bythell JC (1994) Expression of low molecular weight HSP 70 related polypeptides from the symbiotic sea anemone Anemonia viridis Forskall in response to heat shock. J Exp Marine Biol Ecol 179:179–193

    Article  CAS  Google Scholar 

  • Shen Y, White E (2001) p53-dependent apoptosis pathways. Adv Cancer Res 82:55–84

    Article  CAS  PubMed  Google Scholar 

  • Smith ML, Fornace AJ (1996) Mammalian DNA damage-inducible genes associated with growth arrest and apoptosis. Mutat Res 340:109–124

    Article  PubMed  Google Scholar 

  • Sonna LA, Fujita J, Gaffin SL, Lilly CM (2002) Invited review: effects of heat and cold stress on mammalian gene expression. J Appl Physiol 92:1725–1742

    Article  CAS  PubMed  Google Scholar 

  • Takle H, McLeod A, Andersen O (2006) Cloning and characterization of the executioner caspases 3, 6, 7 and Hsp70 in hyperthermic Atlantic salmon (Salmo salar) embryos. Comp Biochem B Biochem 144:188–198

    Article  Google Scholar 

  • Tello D, Balsa E, Acosta-Iborra B et al (2011) Induction of the mitochondrial NDUFA4L2 protein by HIF-1α decreases oxygen consumption by inhibiting Complex I activity. Cell Metab 14:768–779

    Article  CAS  PubMed  Google Scholar 

  • Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316

    Article  CAS  PubMed  Google Scholar 

  • Tong M, Carrero JJ, Qureshi AR et al (2007) Plasma pentraxin 3 in patients with chronic kidney disease: associations with renal function, protein-energy wasting, cardiovascular disease, and mortality. Clin J Am Soc Nephrol 2:889–897

    Article  CAS  PubMed  Google Scholar 

  • Toniato E, Chen XP, Losman J et al (2002) TRIM8/GERP RING finger protein interacts with SOCS-1. J Biol Chem 277:37315–37322

    Article  CAS  PubMed  Google Scholar 

  • Tort L, Teles M (2011) The endocrine response to stress—a comparative view. Basic Clin. Endocrinol. Up-To-Date, Dr. Fulya. InTech, pp 263–286

  • Van Ham TJ, Kokel D, Peterson RT (2012) Apoptotic cells are cleared by directional migration and elmo1- dependent macrophage engulfment. Curr Biol 22:830–836

    Article  PubMed Central  PubMed  Google Scholar 

  • Villarroel F, Casado A, Amthauer R, Concha MI (2013) High density lipoproteins down-regulate transcriptional expression of pro-inflammatory factors and oxidative burst in head kidney leukocytes from rainbow trout, Oncorhynchus mykiss. Fish Shellfish Immunol 35:180–183

    Article  CAS  PubMed  Google Scholar 

  • Wagner F, Heidtke KR, Drescher B, Radelof U (2007) Development and perspectives of scientific services offered by genomic biological resource centres. Brief Funct Genomic Proteomic 6:163–170

    Article  CAS  PubMed  Google Scholar 

  • Woynarovich A, Hoitsy G, Moth-Poulsen T (2011) Small-scale rainbow trout farming. FAO Fish Aquac Tech Pap No 561. FAO, Rome, p 81

    Google Scholar 

  • Yamashita M, Ojima N, Sakamoto T (1996) Induction of proteins in response to cold acclimation of rainbow trout cells. FEBS Lett 382:261–264

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Liu X, Huang J et al (2012) Molecular characterization and expression profile of MAP2K1ip1/MP1 gene from tiger shrimp, Penaeus monodon. Mol Biol Rep 39:5811–5818

    Article  CAS  PubMed  Google Scholar 

  • Zapata A, Diez B, Cejalvo T et al (2006) Ontogeny of the immune system of fish. Fish Shellfish Immunol 20:126–136

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The Campus bioFISCH-MV coordinated this work, and funding came from the European Fisheries Fund (EFF) and the Ministry of Agriculture, the Environment and Consumer Protection Mecklenburg-Western Pomerania (pilot project: Rainbow trout BORN). We kindly thank I. Hennings and B. Schöpel for expert technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Goldammer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

Pooling and hybridization scheme of samples used for analysis by 4×44K Salmon Gene Expression Microarray slides (Agilent Technologies). Determined gender (♀,♂) is given for each fish used in this study. (XLSX 13 kb)

Online Resource 2

Primers used in this study. (DOCX 29 kb)

Online Resource 3

Overview of all temperature-regulated genes in the rainbow trout kidney (fold change ≥3; bonferroni-corrected p-value ≤0.05).Genes discussed or mentioned in the manuscript are underlined in black. (XLSX 101 kb)

Online Resource 4

Number of (A) heat- and cold-induced and (B)strain-specific array-predicted features in BORN and imported trout. (XLSX 10 kb)

Online Resource 5

Overview of annotated genes grouped by their cellular functions (fold change ≥3; bonferroni-corrected p-value ≤0.05). The genes discussed or mentioned in the manuscript are underlined in black. (XLSX 60 kb)

Online Resource 6

Expression ratios of microarray-predicted candidate genes between 15°C and challenging temperatures of 8°C (15°C/8°C) or 23°C (15°C/23°C), as well as ratios between imported trout and BORN trout at 15°C (Import/BORN). Data are given as fold changes (FC) with their respective significant levels (p-values). (DOCX 37 kb)

Online Resource 7

Potential interaction of temperature-regulated genes (bold letters, shaded in red) involved in cell death in BORN (a) and imported trout (b). IPA (Ingenuity® Systems, www.ingenuity.com) generated networks. Full and broken lines indicate direct or indirect interactions, respectively. Arrows specify the orientation of regulations. (GIF 330 kb)

High Resolution Image (TIFF 7205 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verleih, M., Borchel, A., Krasnov, A. et al. Impact of Thermal Stress on Kidney-Specific Gene Expression in Farmed Regional and Imported Rainbow Trout. Mar Biotechnol 17, 576–592 (2015). https://doi.org/10.1007/s10126-015-9640-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-015-9640-1

Keywords

Navigation