Skip to main content
Log in

Effects of seasonal and latitudinal cold on oxidative stress parameters and activation of hypoxia inducible factor (HIF-1) in zoarcid fish

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Acute, short term cooling of North Sea eelpout Zoarces viviparus is associated with a reduction of tissue redox state and activation of hypoxia inducible factor (HIF-1) in the liver. The present study explores the response of HIF-1 to seasonal cold in Zoarces viviparus, and to latitudinal cold by comparing the eurythermal North Sea fish to stenothermal Antarctic eelpout (Pachycara brachycephalum). Hypoxic signalling (HIF-1 DNA binding activity) was studied in liver of summer and winter North Sea eelpout as well as of Antarctic eelpout at habitat temperature of 0°C and after long-term warming to 5°C. Biochemical parameters like tissue iron content, glutathione redox ratio, and oxidative stress indicators were analyzed to see whether the cellular redox state or reactive oxygen species formation and HIF activation in the fish correlate. HIF-1 DNA binding activity was significantly higher at cold temperature, both in the interspecific comparison, polar vs. temperate species, and when comparing winter and summer North Sea eelpout. Compared at the low acclimation temperatures (0°C for the polar and 6°C for the temperate eelpout) the polar fish showed lower levels of lipid peroxidation although the liver microsomal fraction turned out to be more susceptible to lipid radical formation. The level of radical scavenger, glutathione, was twofold higher in polar than in North Sea eelpout and also oxidised to over 50%. Under both conditions of cold exposure, latitudinal cold in the Antarctic and seasonal cold in the North Sea eelpout, the glutathione redox ratio was more oxidised when compared to the warmer condition. However, oxidative damage parameters (protein carbonyls and thiobarbituric acid reactive substances (TBARS) were elevated only during seasonal cold exposure in Z. viviparus. Obviously, Antarctic eelpout are keeping oxidative defence mechanisms high enough to avoid accumulation of oxidative damage products at low habitat temperature. The paper discusses how HIF could be instrumental in cold adaptation in fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Reference

  • Abele D, Puntarulo S (2004) Formation of reactive species and induction of antioxidant defence systems in polar and temperate marine invertebrates and fish. Comp Biochem Physiol 138A:405–415

    CAS  Google Scholar 

  • Abele D, Philipp E, Gonzalez P, Puntarulo S (2007) Marine invertebrate mitochondria and oxidative stress. Front Biosci 12:933–946

    Article  PubMed  CAS  Google Scholar 

  • Acker T, Acker H (2004) Cellular oxygen sensing need in CNS function: physiological and pathological implications. J Exp Biol 207:3171–3188

    Article  PubMed  CAS  Google Scholar 

  • Acker T, Fandrey J, Acker H (2006) The good, the bad and the ugly in oxygen sensing: ROS, cytochromes and prolyl-hydroxylases. Cardiovasc Res 71:195–207

    Article  PubMed  CAS  Google Scholar 

  • Atunes F, Boveris A, Cadenas E (2004) On the mechanism and biology of cytochrome oxidase inhibition by nitric oxide. PNAS 101:16774–16779

    Article  CAS  Google Scholar 

  • Buettner GR (1987) Spin trapping: ESP parameters of spin adducts. Free Rad Biol Med 3:259–303

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 71:248–254

    Article  Google Scholar 

  • Brodte E, Graeve M, Jacob U, Knust R, Pörtner H-O (2006a) Temperature dependent lipid levels and components in polar and temperate eelpout (Zoarcidae). Fish Physiol Biochem (in press)

  • Brodte E, Knust R, Pörtner H-O, Arntz WE (2006b) Biology of the Antarctic eelpout Pachycara brachycephalum. Deep-Sea Res 53:1131–1140

    Article  Google Scholar 

  • Brodte E, Knust R, Pörtner HO (2006c) Temperature dependent energy allocation to growth in Antarctic and boreal eelpout (Zoarcidae). Polar Biol doi:10.1007/s00300-006-0165-y

  • Brumby PE, Massey V (1967) Determination of non-heme iron, total iron and copper. Methods Enzymol 10:464–472

    Google Scholar 

  • Cleeter MWJ, Cooper JM, Darley-Usmar VM, Moncada S, Schapira AHV (1994) Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. Implications for neurodegenerative diseases. FEBS Lett 345:50–54

    Article  PubMed  CAS  Google Scholar 

  • Czubryt MP, Panagia V, Pierce GN (1996) The roles of free radicals, peroxides and oxidized lipoproteins in second messenger system dysfunction. EXS 76:57–69

    PubMed  CAS  Google Scholar 

  • Desai I (1984) Vitamin E analysis methods for animal tissues. Methods Enzymol 105:138–146

    Article  PubMed  CAS  Google Scholar 

  • Doege K, Heine S, Jensen I, Jelkmann W, Metzen E (2005) Inhibition of mitochondrial respiration elevates oxygen concentration but leaves regulation of hypoxia-inducible factor (HIF) intact. Blood 106:2311–2317

    Article  PubMed  CAS  Google Scholar 

  • Dunlap WC, FujisawaA , Yamamoto Y, Moylan TJ, Sidell BD (2002) Notothenoid fish, krill and phytoplankton from Antarctica contain a vitamin E constituent (α-tocopherol) functionally associated with cold-water adaptation. Comp Biochem Physiol 133B:299–305

    CAS  Google Scholar 

  • Egginton S, Sidell BD (1989) Thermal acclimation induces adaptive changes in subcellular structure of fish skeletal muscle. Am J Physiol 256:R1–R9

    PubMed  CAS  Google Scholar 

  • Fandrey J, Gorr TA, Gassmann M (2006) Regulating cellular oxygen sensing by hydroxylation. Cardiovasc Res 71:642–651

    Article  PubMed  CAS  Google Scholar 

  • Fariss MW, Reed DJ (1987) High-performance liquid chromatography of thiols and disufides: diphenol derivatives. Methods Enzymol 143:101–109

    PubMed  CAS  Google Scholar 

  • Gieseg SP, Cuddihy S, Hill JV, Davison W (2000) A comparison of plasma vitamin C and E levels in two Antarctic and two temperate water fish species. Comp Biochem Physiol 125B:371–378

    CAS  Google Scholar 

  • Gonzalez Flecha B, Llesuy S, Boveris A (1991) Hydroperoxide-initiated chemiluminescence: an assay for oxidative stress in biopsies of heart, liver, and muscle. Free Rad Biol Med 10:93–100

    Article  PubMed  CAS  Google Scholar 

  • Gorr TA, Gassmann M, Wappner P (2006) Sensing and responding to hypoxia via HIF in model invertebrates. J Insect Physiol 52:349–364

    Article  PubMed  CAS  Google Scholar 

  • Gracey AY, Fraser FJ, Li W, Fang Y (2004) Coping with cold: an integrative analysis of the transcriptome of a poikilothermic vertebrate. Proc Natl Acad Sci USA 101(48):16970–16975

    Article  PubMed  CAS  Google Scholar 

  • Günzler WA, Flohe L (1985) Glutathione peroxidase. In: Greenwald RA (ed) CRC handbooks of methods for oxygen radical research. CRC, Boca Raton, pp 285–289

    Google Scholar 

  • Haddad JJE, Olvers RE, Land SC (2000) Antioxidant/pro-oxidant equilibrium regulates HIF-1α and NF-κB redox sensitivity. J Biol Chem 275:21130–21139

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1985) Free radicals in biology and medicine, 2nd edn. Clarendon, Oxford, pp 1–543

    Google Scholar 

  • Han D, Hanawa N, Saberi B, Kaplowitz N (2006) Mechanisms of liver injury: role of glutathione redox status in liver injury. Am J Physiol Gastrointest Liver Physiol 291:G1–G7

    Article  PubMed  CAS  Google Scholar 

  • Heise K, Puntarulo S, Nikinmaa M, Lucassen M, Pörtner HO, Abele D (2006a) Oxidative stress and HIF-1 DNA binding during stressful cold exposure and recovery in the North Sea eelpout (Zoarces viviparus). Comp Biochem Physiol 143A:494–503

    CAS  Google Scholar 

  • Heise K, Puntarulo S, Nikinmaa M, Abele D, Pörtner HO (2006b) Oxidative stress during stressful heat exposure and recovery in the North Sea eelpout (Zoarces viviparus). J Exp Biol 209:353–363

    Article  PubMed  CAS  Google Scholar 

  • Huang LE, Arany Z, Livingston DM, Bunn FH (1996) Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its α-subunit. J Biol Chem 271(50):32253–32259

    Article  PubMed  CAS  Google Scholar 

  • Huang LE, Bunn FH (2003) Hypoxia-inducible factor and its biomedical relevance. J Biol Chem 278(22):19575–19578

    Article  PubMed  CAS  Google Scholar 

  • Hulbert AJ (2006) The link between membrane composition, metabolic rate and lifespan. Comp Biochem Physiol A (in press)

  • Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG Jr (2001) HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Sci 292:464–468

    CAS  Google Scholar 

  • Johnston IA (1982) Capillarisation, oxygen diffusion distances and mitochondrial content of carp muscles following acclimation to summer and winter temperatures. Cell Tissue Res 222:325–337

    Article  PubMed  CAS  Google Scholar 

  • Katschinski DM, Le L, Heinrich D, Wagner KF, Hofer T, Schindler SG, Wenger RH (2002) Heat induction of the unphosphorylated form of hypoxia-inducible factor-1α is dependent on heat shock protein-90 activity. J Biol Chem 277:9262–9267

    Article  PubMed  CAS  Google Scholar 

  • Kidd PM (1997) Glutathione: systemic protectant against oxidative and free radical damage. Alt Med Rev 1:155–176

    Google Scholar 

  • Klein SM, Cohen G, Lieber CS, Cederbaum AI (1983) Increased microsomal oxidation of hydroxy radical scavengers and ethanol after chronic consumption of ethanol. Arch Biochem Biophys 223:425–433

    Article  PubMed  CAS  Google Scholar 

  • Kvietikova I, Wenger RH, Marti HH, Gassmann M (1995) The transcription factors ATF-1 and CREB-1 bind constitutively to the hypoxia-inducible factor-1 (HIF-1) DNA recognition site. Nucl Acids Res 23:4542–4550

    Article  PubMed  CAS  Google Scholar 

  • Lannig G, Storch D, Pörtner H-O (2005) Aerobic mitochondrial capacities in Antarctic and temperate eelpout (Zoarcidae) subjected to warm versus cold acclimation. Polar Biol 28:575–584

    Article  Google Scholar 

  • Larsen B., Pörtner HO, Jensen FB (1997) Extra- and intracellular acid-base balance and ionic regulation in cod (Gadus morhua) during combined and isolated exposures to hypercapnia and copper. Marine Biol 128:337–346

    Article  CAS  Google Scholar 

  • Law S, Wu R, Ng P, Yu R, Kong R (2006) Cloning and expression analysis of two distinct HIF-alpha isoforms—gcHIF-1alpha and gcHIF-4alpha—from the hypoxia-tolerant grass carp, Ctenopharyngodon idellus. BMC Mol Biol 7:15 doi:10.1186/1471-2199-7-15

    Google Scholar 

  • Lawrie S, Tancock N, McGrowth N, Roger J (1991) Influence of complexation of the uptake by plants of iron, manganese, copper and zinc. I Effect of EDTA in a multimetal and computer simulation study. J Exp Biol 42:509–515

    Google Scholar 

  • Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz A-G, Ahn B-W, Shaltiel S, Stadtman ER (1990) Determination of carbonal content in oxidatively modified proteins. Methods Enzymol 186:464–485

    PubMed  CAS  Google Scholar 

  • Linares E, Nakao LS, Augusto O, Kadiiska MB (2003) EPR studies of in vivo radical production by lipopolysaccharide: potential role of iron mobilized from iron-nitrosyl complexes. Free Rad Biol Med 34:766–773

    Article  PubMed  CAS  Google Scholar 

  • Livingstone DR, Lips F, Martinez PG, Pipe RK (1992) Antioxidant enzymes in the digestive gland of the common mussel Mytilus edulis. Marine Biol 112:265–276

    Article  CAS  Google Scholar 

  • Mark FC, Bock C, Pörtner HO (2002a) Oxygen-limited thermal tolerance in Antarctic fish investigated by MRI and 31P-MRS. Am J Physiol, Regul Integr Comp Physiol 283:R1254–R1262

    CAS  Google Scholar 

  • Mark FC, Lucassen M, Pörtner HO (2006b) Thermal sensitivity of uncoupling proteins in polar and temperate fish. Comp Biochem Physiol D1:365–374

    Google Scholar 

  • Nikinmaa M (2002) Oxygen-dependent cellular functions—why fishes and their aquatic environment are a prime choice of study. Comp Biochem Physiol 133A:1–16

    CAS  Google Scholar 

  • Nikinmaa M, Pursiheimo S, Soitamo AJ (2004) Redox state regulates HIF-1α and its DNA binding and phosphorylation in salmonid cells. J Cell Sci 117:3201–3206

    Article  PubMed  CAS  Google Scholar 

  • Nikinmaa M, Rees BB (2005) Oxygen-dependent gene expression in fishes. Am J Physiol Regul Integr Comp Physiol 288R:1079–1090

    Google Scholar 

  • Minet E, Mottet D, Michel G, Roland I, Raes M, Remacle J, Michiels C (1999) Hypoxia-induced activation of HIF-1: role of HIF-1alpha-Hsp90 interaction. FEBS Lett 460(2):251–256

    Article  PubMed  Google Scholar 

  • Morin PJ, McMullen DC, Storey KB (2005) HIF-1α involvement in low temperature and anoxia survival by a freeze tolerant insect. Mol Cell Biochem 280:99–106

    Article  PubMed  CAS  Google Scholar 

  • Philipp E, Brey T, Pörtner H-O, Abele D (2005) Chronological and physiological ageing in a polar and a temperate mud clam. Mech Ageing Dev 126:598–609

    Article  PubMed  CAS  Google Scholar 

  • Philipp E, Brey T, Heilmayer O, Abele D, Pörtner H-O (2006) Physiological ageing in a polar and a temperate swimming scallop. Mar Ecol Prog Ser 307:187–198

    Article  Google Scholar 

  • Reed DJ (1990) Glutathione: toxicological implications. Annu Rev Pharmacol Toxicol 30:603–631

    Article  PubMed  CAS  Google Scholar 

  • Rissanen E, Tranberg HK, Sollid J, Nilsson GE, Nikinmaa M (2006) Temperature regulates hypoxia-inducible factor-1 (HIF-1) in a poikilothermic vertebrate, crucian carp (Carassius carassius). J Exp Biol 209:994–1003

    Article  PubMed  CAS  Google Scholar 

  • Sartoris FJ, Bock C, Pörtner HO (2003) Temperature-dependent pH regulation in eurythermal and stenothermal marine fish: an interspecies comparison using 31P-NMR. J Therm Biol 28:363–371

    Article  CAS  Google Scholar 

  • Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Rad Biol Med 30:1191–1212

    Article  PubMed  CAS  Google Scholar 

  • Shams I, Nevo E, Avivi A (2004) Ontogenetic expression of erythropoietin and hypoxia inducible factor-1 alpha genes in subterranean blind mole rats. FASEB: doi:10.1096/fj.04-2758fje

  • Soitamo AJ, Rabergh CMI, Gassmann M, Sistonen L, Nikinmaa M (2001) Characterization of a hypoxia-inducible factor (HIF-1α) from rainbow trout. J Biol Chem 276:19677–19705

    Article  Google Scholar 

  • Stroka DM, Burkhardt T, Desbaillets I, Wenger RH, Neil DAH, Gassmann M, Candinas D (2001) HIF-1 is expressed in normoxic tissue and displays an organ-specific regulation under systemic hypoxia. FASEB J 15:2445–2453

    PubMed  CAS  Google Scholar 

  • Uchiyama M, Mihara M (1978) Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem 86:271–278

    Article  PubMed  CAS  Google Scholar 

  • Van Dijk PLM, Tesch C, Hardewig I, Pörtner H-O (1999) Physiological disturbances at critically high temperatures: a comparison between stenothermal antarctic and eurythermal temperate eelpouts (Zoarcidae). J Exp Biol 202:3611–3621

    PubMed  Google Scholar 

  • Vegh M, Marton A,Horvath I (1988) Reduction of Fe(III) ADP complex by liver microsomes. Biochim Biophys Act 964:146–150

    CAS  Google Scholar 

  • Vuori KAM, Soitamo A, Vuorinen PJ, Nikinmaa M (2004) Baltic salmon (Salmo salar) yolk-sac fry mortality is associated with disturbances in the function of hypoxia-inducible transcription factor (HIF-1α) and consecutive gene expression. Aquat Toxicol 68:301–313

    Article  PubMed  CAS  Google Scholar 

  • Wenger RH (2000) Mammalian oxygen sensing, signalling and gene regulation. J Exp Biol 203:1253–1263

    PubMed  CAS  Google Scholar 

  • Woodmansee AN, Imlay JA (2002) Meth Enzymol 349:3–9

    PubMed  CAS  Google Scholar 

  • Yegorov DY, Kozlov AV, Azizova OA, Vladimorov YA (1993) Simultaneous determination of Fe(III) and Fe(II) in water solutions and tissue homogenates using desferal and 1,10-phenanthroline. Free Rad Biol Med 15:565–574

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Maike Schmidt for her help in preparing the fish samples, as well as Tamara Zaobornyj and Laura Valdez for adjusting the chemiluminescence assay protocol to fish liver tissue. We further thank Hanna Tranberg, Eeva Rissanen and Kristiina Vuori for their contribution to adjust EMSA and Western blot methodology to eelpout samples. This study was supported by grants from Deutscher Akademischer Austauschdienst (DAAD) to KH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Abele.

Additional information

Communicated by G. Heldmaier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heise, K., Estevez, M.S., Puntarulo, S. et al. Effects of seasonal and latitudinal cold on oxidative stress parameters and activation of hypoxia inducible factor (HIF-1) in zoarcid fish. J Comp Physiol B 177, 765–777 (2007). https://doi.org/10.1007/s00360-007-0173-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-007-0173-4

Keywords

Navigation