Skip to main content
Log in

Insights into the Payne Effect of Carbon Black Filled Styrene-butadiene Rubber Compounds

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

As a widely used reinforcing filler of rubber, carbon black (CB) often enhances the nonlinear Payne effect and its mechanism still remains controversial. We adopt simultaneous measurement of rheological and electrical behaviors for styrene-butadiene rubber (SBR)/CB compounds and CB gel (CBG) during large deformation/recovery to investigate the contribution of conductive CB network evolution to the Payne effect of the compounds. In the highly filled compounds, the frequency dependence of their strain softening behavior is much more remarkable than that of their CB network breakdown during loading, while during unloading the unrecoverable filler network hardly affects the complete recovery of modulus, both revealing that their Payne effect should be dominated by the disentanglement of SBR matrix. Furthermore, the bound rubber adjacent to CB particles can accelerate the reconstruction of continuous CB network and improve the reversibility of Payne effect. This may provide new insights into the effect of filler network, bound rubber, and free rubber on the Payne effect of CB filled SBR compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Song, Y.; Zheng, Q. Concepts and conflicts in nanoparticles reinforcement to polymers beyond hydrodynamics. Prog. Mater. Sci.2016, 84, 1–58.

    CAS  Google Scholar 

  2. Montes, H.; Lequeux, F.; Berriot, J. Influence of the glass transition temperature gradient on the nonlinear viscoelastic behavior in reinforced elastomers. Macromolecules2003, 36, 8107–8118.

    CAS  Google Scholar 

  3. Litvinov, V. M.; Orza, R. A.; Klüppel, M.; van Duin, M.; Magusin, P. C. M. M. Rubber-filler interactions and network structure in relation to stress-strain behavior of vulcanized, carbon black filled EPDM. Macromolecules2011, 44, 4887–4900.

    CAS  Google Scholar 

  4. Kohjiya, S.; Katoh, A.; Suda, T.; Shimanuki, J.; Ikeda, Y. Visualisation of carbon black networks in rubbery matrix by skeletonisation of 3D-TEM image. Polymer2006, 47, 3298–3301.

    CAS  Google Scholar 

  5. Kohjiya, S.; Kato, A.; Ikeda, Y. Visualization of nanostructure of soft matter by 3D-TEM: nanoparticles in a natural rubber matrix. Prog. Polym. Sci.2008, 33, 979–997.

    CAS  Google Scholar 

  6. Zhu, Z.; Thompson, T.; Wang, S. Q.; von Meerwall, E. D.; Halasa, A. Investigating linear and nonlinear viscoelastic behavior using model silica-particle-filled polybutadiene. Macromolecules2005, 38, 8816–8824.

    CAS  Google Scholar 

  7. Robertson, C. G.; Roland, C. M. Glass transition and interfacial segmental dynamics in polymer-particle composites. Rubber Chem. Technol.2008, 81, 506–522.

    CAS  Google Scholar 

  8. Shang, S. W.; Williams, J. W.; Söderholm, K. J. M. Work of adhesion influence on the rheological properties of silica filled polymer composites. J. Mater. Sci.1995, 30, 4323–4334.

    CAS  Google Scholar 

  9. Payne, A. R. Effect of dispersion on the dynamic properties of filler-loaded rubbers. J. Appl. Polym. Sci.1965, 9, 2273–2284.

    CAS  Google Scholar 

  10. Payne, A. R. The dynamic properties of carbon black-loaded natural rubber vulcanizates Part I. J. Appl. Polym. Sci.1962, 6, 57–63.

    CAS  Google Scholar 

  11. Meera, A. P.; Said, S.; Grohens, Y.; Thomas, S. Nonlinear viscoelastic behavior of silica-filled natural rubber nanocomposites. J. Phys. Chem. C2009, 113, 17997–18002.

    CAS  Google Scholar 

  12. Yang, J.; Han, C. Dynamics of silica-nanoparticle-filled hybrid hydrogels: nonlinear viscoelastic behavior and chain entanglement network. J. Phys. Chem. C2013, 117, 20236–20243.

    CAS  Google Scholar 

  13. Sternstein, S. S.; Zhu, A. Reinforcement mechanism of nanofilled polymer melts as elucidated by nonlinear viscoelastic behavior. Macromolecules2002, 35, 7262–7273.

    CAS  Google Scholar 

  14. Sarvestani, A. S. On the emergence of the Payne effect in polymer melts reinforced with nanoparticles. Macromol. Theory Simul.2016, 25, 312–321.

    CAS  Google Scholar 

  15. Sun, J.; Song, Y.; Zheng, Q.; Tan, H.; Yu, J.; Li, H. Nonlinear rheological behavior of silica filled solution-polymerized styrene butadiene rubber. J. Polym. Sci., Part B: Polym. Phys.2007, 45, 2594–2602.

    CAS  Google Scholar 

  16. Song, Y.; Zeng, L.; Zheng, Q. Reconsideration of the rheology of silica filled natural rubber compounds. J. Phys. Chem. B2017, 121, 5867–5875.

    CAS  PubMed  Google Scholar 

  17. van de Walle, A.; Tricot, C.; Gerspacher, M. Modeling carbon black reinforcement in rubber compounds. Kautsch. Gummi Kunstst.1996, 49, 172–179.

    CAS  Google Scholar 

  18. Harwood, J. A. C.; Mullins, L.; Payne, A. R. Tensile stress softening effects in pure gum and filler loaded vulcanizates. J. Polym. Sci., Part B: Polym. Lett.1965, 3, 119–122.

    CAS  Google Scholar 

  19. Gusev, A. A. Micromechanical mechanism of reinforcement and losses in filled rubbers. Macromolecules2006, 39, 5960–5962.

    CAS  Google Scholar 

  20. Song, Y.; Zeng, L.; Zheng, Q. Understanding the reinforcement and dissipation of natural rubber compounds filled with hybrid filler composed of carbon black and silica. Chinese J. Polym. Sci.2017, 35, 1436–1446.

    CAS  Google Scholar 

  21. He, X.; Shi, X.; Hoch, M.; Gögelein, C. Mechanical properties of carbon black filled hydrogenated acrylonitrile butadiene rubber for packer compounds. Polym. Test.2016, 53, 257–266.

    CAS  Google Scholar 

  22. Fan, X.; Xu, H.; Zhang, Q.; Xiao, D.; Song, Y.; Zheng, Q. Insight into the weak strain overshoot of carbon black filled natural rubber. Polymer2019, 167, 109–117.

    CAS  Google Scholar 

  23. Xu, H.; Xia, X.; Hussain, M.; Song, Y.; Zheng, Q. Linear and nonlinear rheological behaviors of silica filled nitrile butadiene rubber. Polymer2018, 156, 222–227.

    CAS  Google Scholar 

  24. Song, Y.; Yang, R.; Du, M.; Shi, X.; Zheng, Q. Rigid nanoparticles promote the softening of rubber phase in filled vulcanizates. Polymer2019, 177, 131–138.

    CAS  Google Scholar 

  25. Gan, S.; Wu, Z. L.; Xu, H.; Song, Y.; Zheng, Q. Viscoelastic behaviors of carbon black gel extracted from highly filled natural rubber compounds: insights into the Payne effect. Macromolecules2016, 49, 1454–1463.

    CAS  Google Scholar 

  26. Cao, Q.; Song, Y.; Tan, Y.; Zheng, Q. Conductive and viscoelastic behaviors of carbon black filled polystyrene during annealing. Carbon2010, 4268–4275.

  27. Liu, Z.; Song, Y.; Shangguan, Y.; Zheng, Q. Simultaneous measurement of normal force and electrical resistance during isothermal crystallization for carbon black filled high-density polyethylene. J. Mater. Sci.2008, 43, 4828–4833.

    CAS  Google Scholar 

  28. Li, H.; Zuo, M.; Liu, T.; Chen, Q.; Zhang, J.; Zheng, Q. Effect of multi-walled carbon nanotubes on the morphology evolution, conductivity and rheological behaviors of poly(methyl methacrylate)/poly(styrene-co-acrylonitrile) blends during isothermal annealing. RSC Adv.2016, 6, 10099–10113.

    CAS  Google Scholar 

  29. Xu, Z.; Song, Y.; Zheng, Q. Payne effect of carbon black filled natural rubber compounds and their carbon black gels. Polymer2019, 185, 121953.

    CAS  Google Scholar 

  30. Bogoslovov, R. B.; Roland, C. M.; Ellis, A. R.; Randall, A. M.; Robertson, C. G. Effect of silica nanoparticles on the local segmental dynamics in poly(vinyl acetate). Macromolecules2008, 41, 1289–1296.

    CAS  Google Scholar 

  31. Sargsyan, A.; Tonoyan, A.; Davtyan, S.; Schick, C. The amount of immobilized polymer in PMMA SiO2 nonocomposises determined from calorimetric data. Eur. Polym. J.2007, 43, 3113–3127.

    CAS  Google Scholar 

  32. Litvinov, V. M.; Steeman, P. A. M. EPDM-carbon black interactions and the reinforcement mechanisms, as studied by low-resolution 1H-NMR. Macromolecules1999, 32, 8476–8490.

    CAS  Google Scholar 

  33. Filippone, G.; de Luna, M. S. A unifying approach for the linear viscoelasticity of polymer nanocomposites. Macromolecules2012, 45, 8853–8860.

    CAS  Google Scholar 

  34. Song, Y.; Zheng, Q. Linear viscoelasticity of polymer melts filled with nano-sized fillers. Polymer2010, 51, 3262–3268.

    CAS  Google Scholar 

  35. Zhang, Q.; Wu, C.; Song, Y.; Zheng, Q. Rheology of fumed silica/polypropylene glycol dispersions. Polymer2018, 148, 400–406.

    CAS  Google Scholar 

  36. Song, Y.; Zheng, Q.; Cao, Q. On time-temperature-concentration superposition principle for dynamic rheology of carbon black filled polymers. J. Rheol.2009, 53, 1379–1388.

    CAS  Google Scholar 

  37. Williams, M. L.; Landel, R. F.; Ferry, J. D. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc.1955, 77, 3701–3707.

    CAS  Google Scholar 

  38. Klüppel, M. Evaluation of viscoelastic master curves of filled elastomers and applications to fracture mechanics. J. Phys.: Condens. Matter2008, 21, 035104.

    Google Scholar 

  39. Pine, D. J.; Gollub, J. P.; Brady, J. F.; Leshansky, A. M. Chaos and threshold for irreversibility in sheared suspensions. Nature2005, 438, 997–1000.

    CAS  PubMed  Google Scholar 

  40. Kluppel, M. The role of disorder in filler reinforcement of elastomers on various length scales. Adv. Polym. Sci.2003, 164, 1–86.

    Google Scholar 

  41. Hyun, K.; Wilhelm, M.; Klein, C. O.; Cho, K. S.; Nam, J. G.; Ahn, K. H.; Lee, S. J.; Ewoldt, R. H.; McKinley, G. H. A review of nonlinear oscillatory shear tests: analysis and application of large amplitude oscillatory shear (LAOS). Prog. Polym. Sci.2011, 36, 1697–1753.

    CAS  Google Scholar 

  42. Hyun, K.; Nam, J. G.; Wilhelm, M.; Ahn, K. H.; Lee, S. J. Nonlinear response of complex fluids under LAOS (large amplitude oscillatory shear) flow. Korean J. Rheol. J.2011, 23, 227–235.

    Google Scholar 

  43. Vermant, J.; Ceccia, S.; Dolgovskij, M. K.; Maffettone, P. L.; Macosko, C. W. Quantifying dispersion of layered nanocomposites via melt rheology. J. Rheol.2007, 15, 97–105.

    Google Scholar 

  44. Satoh, Y.; Fujii, S.; Kawahara, S.; Isono, Y.; Kagami, S. Differential dynamic modulus of carbon black filled, uncured SBR in singlestep large shearing deformations. Soft Matter2007, 3, 29–40.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51790503 and 51873181).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zuo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, A., Shi, XY., Sun, SH. et al. Insights into the Payne Effect of Carbon Black Filled Styrene-butadiene Rubber Compounds. Chin J Polym Sci 39, 81–90 (2021). https://doi.org/10.1007/s10118-020-2462-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2462-2

Keywords

Navigation