Skip to main content

Advertisement

Log in

Solvent-Free Synthesis of Self-Healable and Recyclable Crosslinked Polyurethane Based on Dynamic Oxime-Urethane Bonds

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Polyurethane is widely used for its versatility in design and range of performance. Self-healing and recyclable dynamic polyurethane networks have attracted extensive attention due to their potential to extend service life and ensure safety in use, as well as to promote sustainable use of resources. Developing green and environment-friendly methods to obtain this material is an interesting and challenging task, as the majority of current dynamic polyurethane networks utilize the solution polymerization method. The use of solvents makes the processes complicated, harmful to environment, and increase the cost. Poly(oxime-urethanes) (POUs) are emerging dynamic polyurethanes and show great potential in diverse fields, such as biomaterials, hot melt adhesives, and flexible electronics. In this study, we utilized the solubility properties of dimethylglyoxime in raw material poly(ethylene glycol) to prepare POUs through bulk polymerization for the first time. This method is simple, convenient and cost-efficient. Simultaneously, copper ion coordination improves POUs strength and dynamic properties, with mechanical strength up from 0.54 MPa to 1.03 MPa and self-healing recovery rate up from 85.5% to 91.8%, and activation energy down from 119.6 kJ/mol to 95.4 kJ/mol. To demonstrate the application of this technology, self-healing and stretchable circuits are constructed from this dynamic polyurethane network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. He, P.; Ruan, H. D.; Wang, C. Y.; Lu, H. Mechanical properties and thermal conductivity of thermal insulation board containing recycled thermosetting polyurethane and thermoplastic. Polymers 2021, 13, 4441.

    Article  Google Scholar 

  2. Xu, D. W.; Ouyang, Z. F.; Dong, Y. J.; Yu, H. Y.; Zheng, S.; Li, S. H.; Tam, K. C. Robust, breathable and flexible smart textiles as multifunctional sensor and heater for personal health management. Adv. Fiber Mater. 2022, 5, 282–295.

    Article  Google Scholar 

  3. Fortman, D. J.; Sheppard, D. T.; Dichtel, W. R. Reprocessing cross-linked polyurethanes by catalyzing carbamate exchange. Macromolecules 2019, 52, 6330–6335.

    Article  CAS  Google Scholar 

  4. Khan, A.; Naveed, M.; Rabnawaz, M. Melt-reprocessing of mixed polyurethane thermosets. Green Chem. 2021, 23, 4771–4779.

    Article  CAS  Google Scholar 

  5. Nicholas, J.; Mohamed, M.; Dhaliwal, G. S.; Anandan, S.; Chandrashekhara, K. Effects of accelerated environmental aging on glass fiber reinforced thermoset polyurethane composites. Compos. B Eng. 2016, 94, 370–378.

    Article  CAS  Google Scholar 

  6. Aguirresarobe, R. H.; Nevejans, S.; Reck, B.; Irusta, L.; Sardon, H.; Asua, J. M.; Ballard, N. Healable and self-healing polyurethanes using dynamic chemistry. Prog. Polym. Sci. 2021, 114, 101362.

    Article  CAS  Google Scholar 

  7. Wang, S.; Fu, D.; Wang, X.; Pu, W.; Martone, A.; Lu, X.; Lavorgna, M.; Wang, Z.; Amendola, E.; Xia, H. High performance dynamic covalent crosslinked polyacylsemicarbazide composites with self-healing and recycling capabilities. J. Mater. Chem. A 2021, 9, 4055–4065.

    Article  CAS  Google Scholar 

  8. Jin, K. L.; Banerji, A.; Kitto, D.; Bates, F. S.; Ellison, C. J. Mechanically robust and recyclable cross-linked fibers from melt blown anthracene-functionalized commodity polymers. ACS Appl. Mater. Interfaces 2019, 11, 12863–12870.

    Article  CAS  PubMed  Google Scholar 

  9. Han, Y.; Liu, C.; Xu, H.; Cao, Y. Engineering reversible hydrogels for 3D cell culture and release using diselenide catalyzed fast disulfide formation. Chin. J. Chem. 2022, 40, 1578–1584.

    Article  CAS  Google Scholar 

  10. Fortman, D. J.; Brutman, J. P.; Cramer, C. J.; Hillmyer, M. A.; Dichtel, W. R. Mechanically activated, catalyst-free polyhydroxyurethane vitrimers. J. Am. Chem. Soc. 2015, 137, 14019–14022.

    Article  CAS  PubMed  Google Scholar 

  11. Zeng, X. W.; Liu, G.; Tao, W.; Ma, Y.; Zhang, X. D.; He, F.; Pan, J. M.; Mei, L.; Pan, G. Q. A drug-self-gated mesoporous antitumor nanoplatform based on ph-sensitive dynamic covalent bond. Adv. Funct. Mater. 2017, 27, 1605985.

    Article  Google Scholar 

  12. Zhang, C.; Lu, H. Wang, X. Transient polymer hydrogels based on dynamic covalent borate ester bonds. Chin. J. Chem. 2022, 40, 2794–2800.

    Article  CAS  Google Scholar 

  13. Sheppard, D. T.; Jin, K. L.; Hamachi, L. S.; Dean, W.; Fortman, D. J.; Ellison, C. J.; Dichtel, W. R. Reprocessing postconsumer polyurethane foam using carbamate exchange catalysis and twin-screw extrusion. ACS Cent. Sci. 2020, 6, 921–927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shi, J. X.; Zheng, T. Z.; Zhang, Y.; Guo, B. H.; Xu, J. Reprocessable cross-linked polyurethane with dynamic and tunable phenol-carbamate network. ACS Sustainable Chem. Eng. 2020, 8, 18729–18729.

    Article  CAS  Google Scholar 

  15. Fu, D. H.; Pu, W. L.; Escorihuela, J.; Wang, X. R.; Wang, Z. H.; Chen, S. Y.; Sun, S. J.; Wang, S.; Zuilhof, H.; Xia, H. S. Acylsemicarbazide moieties with dynamic reversibility and multiple hydrogen bonding for transparent, high modulus, and malleable polymers. Macromolecules 2020, 53, 7914–7924.

    Article  CAS  Google Scholar 

  16. Lu, W. H.; Pan, X. Q.; Zhang, Z. B.; Zhu, J.; Zhou, N. C.; Zhu, X. L. A degradable cross-linked polymer containing dynamic covalent selenide bond. Polym. Chem. 2017, 8, 3874–3880.

    Article  CAS  Google Scholar 

  17. Zhang, L. Z.; Liu, Z. H.; Wu, X. L.; Guan, Q. B.; Chen, S.; Sun, L. J.; Guo, Y. F.; Wang, S. L.; Song, J. C.; Jeffries, E. M.; He, C. L.; Qing, F. L.; Bao, X. G.; You, Z. W. A highly efficient self-healing elastomer with unprecedented mechanical properties. Adv. Mater. 2019, 31, 1901402.

    Article  Google Scholar 

  18. Wu, S. L.; Chen, Q. Advances and new opportunities in the rheology of physically and chemically reversible polymers. Macromolecules 2022, 55, 697–714.

    Article  CAS  Google Scholar 

  19. Zhang, M. Q. Self-healing polymeric materials: on a winding road to success. Chinese J. Polym. Sci. 2022, 40, 1315–1316.

    Article  CAS  Google Scholar 

  20. Fu, D.; Pu, W.; Wang, Z.; Lu, X.; Sun, S.; Yu, C.; Xia, H. A facile dynamic crosslinked healable poly(oxime-urethane) elastomer with high elastic recovery and recyclability. J. Mater. Chem. A 2018, 6, 18154–18164.

    Article  CAS  Google Scholar 

  21. Zhang, L. Z.; You, Z. W. Dynamic oxime-urethane bonds, a versatile unit of high performance self-healing polymers for diverse applications. Chinese J. Polym. Sci. 2021, 39, 1281–1291.

    Article  CAS  Google Scholar 

  22. He, C. F.; Shi, S. W.; Wang, D.; Helms, B. A.; Russell, T. P. Poly(oxime-ester) vitrimers with catalyst-free bond exchange. J. Am. Chem. Soc. 2019, 141, 13753–13757.

    Article  CAS  PubMed  Google Scholar 

  23. Jiang, C. Y.; Zhang, L. Z.; Yang, Q.; Huang, S. X.; Shi, H. P.; Long, Q.; Qian, B.; Liu, Z. H.; Guan, Q. B.; Liu, M. J.; Yang, R. H.; Zhao, Q.; You, Z. W.; Ye, X. F. Self-healing polyurethane-elastomer with mechanical tunability for multiple biomedical applications in vivo. Nat. Commun. 2022, 13, 4395.

    Google Scholar 

  24. Wang, S. L.; Liu, Z. H.; Zhang, L. Z.; Guo, Y. F.; Song, J. C.; Lou, J. M.; Guan, Q. B.; He, C. L. You, Z. W. Strong, detachable, and self-healing dynamic crosslinked hot melt polyurethane adhesive. Mater. Chem. Front. 2019, 3, 1833–1839.

    Article  CAS  Google Scholar 

  25. Gao, H.; Xu, J. A.; Liu, S.; Song, Z. Q.; Zhou, M.; Liu, S. W.; Li, F.; Li, F. H.; Wang, X. D.; Wang, Z. X.; Zhang, Q. X. Stretchable, self-healable integrated conductor based on mechanical reinforced graphene/polyurethane composites. J. Colloid Interface Sci. 2021, 597, 393–400.

    Article  CAS  PubMed  Google Scholar 

  26. Qiao, Z.; Yang, Z. S.; Liu, W. X.; Wang, X. L.; Gao, Y.; Yu, Z. Q.; Zhu, C. Z.; Zhao, N.; Xu, J. Molecular weight switchable polyurethanes enable melt processing. Chem. Eng. J. 2020, 384, 123287.

    Article  CAS  Google Scholar 

  27. Auepattana-Aumrung, K.; Crespy, D. Self-healing and anticorrosion coatings based on responsive polymers with metal coordination bonds. Chem. Eng. J. 2023, 452, 139055.

    Article  CAS  Google Scholar 

  28. Yang, L; Liu, Z.; Neisiany, R. E.; Lou, J.; Guo, Y.; Zhang, L; Liu, H.; Chen, S.; Gu, S.; You, Z. A topological polymer network with Cu(II)-coordinated reversible imidazole-urea locked unit constructs an ultra-strong self-healing elastomer. Sci. China Chem. 2023, DOI: https://doi.org/10.1007/s11426-022-1437-5.

  29. Li, T.; Zheng, T.; Han, J.; Liu, Z.; Guo, Z. X.; Zhuang, Z.; Xu, J.; Guo, B. H. Effects of diisocyanate structure and disulfide chain extender on hard segmental packing and self-healing property of polyurea elastomers. Polymers 2019, 11, 838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu, X.; Liu, X.; Li, W.; Ru, Y.; Li, Y.; Sun, A. Wei, L. Engineered self-healable elastomer with giant strength and toughness via phase regulation and mechano-responsive self-reinforcing. Chem. Eng. J. 2021, 410, 128300.

    Article  CAS  Google Scholar 

  31. Li, C. H.; Zuo, J. L. Self-healing polymers based on coordination bonds. Adv. Mater. 2020, 32, 1903762.

    Article  CAS  Google Scholar 

  32. Lucherelli, M. A.; Duval, A.; Averous, L. Combining associative and dissociative dynamic linkages in covalent adaptable networks from biobased 2,5-furandicarboxaldehyde. ACS Sustainable Chem. Eng. 2023, 11, 2334.

    Article  CAS  Google Scholar 

  33. Van Lijsebetten, F.; De Bruycker, K.; Van Ruymbeke, E.; Winne, J. M.; Du Prez, F. E. Characterising different molecular landscapes in dynamic covalent networks. Chem. Sci. 2022, 13, 12865–12875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Porath, L. E.; Evans, C. M. Importance of broad temperature windows and multiple rheological approaches for probing viscoelasticity and entropic elasticity in vitrimers. Macromolecules 2021, 54, 4782–4791.

    Article  CAS  Google Scholar 

  35. Shi, J.; Zheng, T.; Guo, B.; Xu, J. Solvent-free thermo-reversible and self-healable crosslinked polyurethane with dynamic covalent networks based on phenol-carbamate bonds. Polymer 2019, 181, 121788.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key Research and Development Program of China (No. 2021YFC2101800), the National Natural Science Foundation of China (Nos. 52173117 and 21991123), the Natural Science Foundation of Shanghai (No. 20ZR1402500), Belt & Road Young Scientist Exchanges Project of Science and Technology Commission Foundation of Shanghai (No. 20520741000), Ningbo 2025 Science and Technology Major Project (No. 2019B10068) and the Science and Technology Commission of Shanghai (No. 20DZ2254900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengwei You.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Yang, L., Zhang, L. et al. Solvent-Free Synthesis of Self-Healable and Recyclable Crosslinked Polyurethane Based on Dynamic Oxime-Urethane Bonds. Chin J Polym Sci 41, 1725–1732 (2023). https://doi.org/10.1007/s10118-023-3009-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-3009-0

Keywords

Navigation