Skip to main content

Advertisement

Log in

Preparation of renewable gallic acid-based self-healing waterborne polyurethane with dynamic phenol–carbamate network: toward superior mechanical properties and shape memory function

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Endowing thermoset self-healing polymers with excellent mechanical properties and shape memory function by utilizing bio-based monomers is highly desirable for the development of the next-generation smart materials. To achieve this goal, herein, we developed a novel thermally induced self-healing system with robust mechanical properties and shape memory function by incorporating dynamic phenol–carbamate bond formed by the polymerization reaction of the renewable gallic acid (GA) and isocyanate into waterborne polyurethane (GA-WPU) with excellent emulsion stability. The mechanical properties and thermal stability of the resulting polymers were much improved due to the introduction of phenol–carbamate networks. Moreover, the crystallization and microphase separation were evaluated to deeply insight into the effect of GA moieties incorporated into the polymer chains of GA-WPU. Significantly, a good balance can be achieved between desirable self-healing ability (healing efficiency 81.1%) and robust mechanical properties (tensile strength 45.1 MPa and elongation at break 576.5%) by adjusting dynamic phenol–carbamate bonds incorporated into the polymer networks, and compared with the reported self-healing polymers, the recovered tensile strength of our target polymer shows an overwhelming superiority. Furthermore, taking the advantage of the crystalline PBA (switching segment) and phenol–carbamate cross-linkages, the prepared GA-WPU polymer can rapidly recover from temporary shape to original shape by thermal energy (less than 30 s, and the shape fixity and recovery ratio remain above 91.5%). We envision that this elaborate strategy is instructive for designing mechanically robust polymeric materials with self-healing, shape memory function and environmentally friendly characteristics.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Fan W, Jin Y, Shi L, Zhou R, Du W (2020) Developing visible-light-induced dynamic aromatic schiff base bonds for room-temperature self-healable and reprocessable waterborne polyurethanes with high mechanical properties. J Mater Chem A 8:6757–6767. https://doi.org/10.1039/C9TA13928A

    Article  CAS  Google Scholar 

  2. Du W, Jin Y, Shi L, Shen Y, Zhou Y (2020) NIR-light-induced thermoset shape memory polyurethane composites with self-healing and recyclable functionalities. Compos Part B Eng 195:108092. https://doi.org/10.1016/j.compositesb.2020.108092

    Article  CAS  Google Scholar 

  3. Zhang L, Liu Z, Wu X et al (2019) A highly efficient self-Healing elastomer with unprecedented mechanical properties. Adv Mater 31:1901402. https://doi.org/10.1002/adma.201901402

    Article  CAS  Google Scholar 

  4. Kang J, Son D, Wang G-JN et al (2018) Tough and water-insensitive self-healing elastomer for robust electronic skin. Adv Mater 30:1706846. https://doi.org/10.1002/adma.201706846

    Article  CAS  Google Scholar 

  5. Xu J, Chen W, Wang C, Zheng M, Ding C, Jiang W, Tan L, Fu J (2018) Extremely stretchable, self-healable elastomers with tunable mechanical properties: synthesis and applications. Chem Mater 30:6026–6039. https://doi.org/10.1021/acs.chemmater.8b02320

    Article  CAS  Google Scholar 

  6. Xu JH, Ye S, Ding CD, Tan LH, Fu JJ (2018) Autonomous self-healing supramolecular elastomer reinforced and toughened by graphitic carbon nitride nanosheets tailored for smart anticorrosion coating applications. J Mater Chem A 6:5887–5898. https://doi.org/10.1039/C7TA09841C

    Article  CAS  Google Scholar 

  7. Jing X, Mi H-Y, Lin Y-J, Enriquez E, Peng X-F, Turng L-S (2018) Highly stretchable and biocompatible strain sensors based on mussel-inspired super-adhesive self-healing hydrogels for human motion monitoring. ACS Appl Mater Interfaces 10:20897–20909. https://doi.org/10.1021/acsami.8b06475

    Article  CAS  Google Scholar 

  8. Cao Y, Morrissey TG, Acome E, Allec SI, Wong BM, Keplinger C, Wang C (2017) A transparent, self-healing, highly stretchable ionic conductor. Adv Mater 29:1605099. https://doi.org/10.1002/adma.201605099

    Article  CAS  Google Scholar 

  9. Gergely RCR, Santa Cruz WA, Krull BP, Pruitt EL, Wang J, Sottos NR, White SR (2018) Restoration of impact damage in polymers via a hybrid microcapsule–microvascular self-healing system. Adv Funct Mater 28:1704197. https://doi.org/10.1002/adfm.201704197

    Article  CAS  Google Scholar 

  10. Kim C, Ejima H, Yoshie N (2018) Polymers with autonomous self-healing ability and remarkable reprocessability under ambient humidity conditions. J Mater Chem A 6:19643–19652. https://doi.org/10.1039/C8TA04769C

    Article  CAS  Google Scholar 

  11. Deng J, Kuang X, Liu R et al (2018) Vitrimer elastomer-based jigsaw puzzle-like healable triboelectric nanogenerator for self-powered wearable electronics. Adv Mater 30:1705918. https://doi.org/10.1002/adma.201705918

    Article  CAS  Google Scholar 

  12. Wu X, Yang X, Yu R, Zhao X-J, Zhang Y, Huang W (2018) A facile access to stiff epoxy vitrimers with excellent mechanical properties via siloxane equilibration. J Mater Chem A 6:10184–10188. https://doi.org/10.1039/C8TA02102C

    Article  CAS  Google Scholar 

  13. Fan W, Jin Y, Shi L (2020) Mechanically robust and tough waterborne polyurethane films based on diselenide bonds and dual H-bonding interactions with fast visible-light-triggered room-temperature self-healability. Polym Chem 11:5463–5474. https://doi.org/10.1039/D0PY00897D

    Article  CAS  Google Scholar 

  14. Fan W, Jin Y, Shi L, Du W, Zhou R, Lai S, Shen Y, Li Y (2020) Achieving fast self-healing and reprocessing of supertough water-dispersed “Living” supramolecular polymers containing dynamic ditelluride bonds under visible light. ACS Appl Mater Interfaces 12:6383–6395. https://doi.org/10.1021/acsami.9b18985

    Article  CAS  Google Scholar 

  15. Fang Z, Zheng N, Zhao Q, Xie T (2017) Healable, reconfigurable, reprocessable thermoset shape memory polymer with highly tunable topological rearrangement kinetics. ACS Appl Mater Interfaces 9:22077–22082. https://doi.org/10.1021/acsami.7b05713

    Article  CAS  Google Scholar 

  16. Wu H, Jin B, Wang H, Wu W, Cao Z, Wu J, Huang G (2020) A degradable and self-healable vitrimer based on non-isocyanate polyurethane. Front Chem 8:585569. https://doi.org/10.3389/fchem.2020.585569

    Article  CAS  Google Scholar 

  17. Wang X, Zhan S, Lu Z et al (2020) Healable, recyclable, and mechanically tough polyurethane elastomers with exceptional damage tolerance. Adv Mater 32:2005759. https://doi.org/10.1002/adma.202005759

    Article  CAS  Google Scholar 

  18. Wang S, Liu Z, Zhang L et al (2019) Strong, detachable, and self-healing dynamic crosslinked hot melt polyurethane adhesive. Mater Chem Front 3:1833–1839. https://doi.org/10.1039/C9QM00233B

    Article  CAS  Google Scholar 

  19. Wu H, Liu X, Sheng D et al (2021) High performance and near body temperature induced self-healing thermoplastic polyurethane based on dynamic disulfide and hydrogen bonds. Polymer 214:123261. https://doi.org/10.1016/j.polymer.2020.123261

    Article  CAS  Google Scholar 

  20. Hu J, Mo R, Jiang X, Sheng X, Zhang X (2019) Towards mechanical robust yet self-healing polyurethane elastomers via combination of dynamic main chain and dangling quadruple hydrogen bonds. Polymer 183:121912. https://doi.org/10.1016/j.polymer.2019.121912

    Article  CAS  Google Scholar 

  21. Suzuki N, Takahashi A, Ohishi T, Goseki R, Otsuka H (2018) Enhancement of the stimuli-responsiveness and photo-stability of dynamic diselenide bonds and diselenide-containing polymers by neighboring aromatic groups. Polymer 154:281–290. https://doi.org/10.1016/j.polymer.2018.09.022

    Article  CAS  Google Scholar 

  22. Du W, Jin Y, Pan J, Fan W, Lai S, Sun X (2018) Thermal induced shape-memory and self-healing of segmented polyurethane containing diselenide bonds. J Appl Polym Sci 135:46326. https://doi.org/10.1002/app.46326

    Article  CAS  Google Scholar 

  23. Cromwell OR, Chung J, Guan Z (2015) Malleable and self-healing covalent polymer networks through tunable dynamic boronic ester bonds. J Am Chem Soc 137:6492–6495. https://doi.org/10.1021/jacs.5b03551

    Article  CAS  Google Scholar 

  24. Cash JJ, Kubo T, Dobbins DJ, Sumerlin BS (2018) Maximizing the symbiosis of static and dynamic bonds in self-healing boronic ester networks. Polym Chem 9:2011–2020. https://doi.org/10.1039/C8PY00123E

    Article  CAS  Google Scholar 

  25. Jia Y, Ying H, Zhang Y, He H, Cheng J (2019) Reconfigurable poly(urea-urethane) thermoset based on hindered urea bonds with triple-shape-memory performance. Macromol Chem Phys 220:1900148. https://doi.org/10.1002/macp.201900148

    Article  CAS  Google Scholar 

  26. Zhang Y, Ying H, Hart KR et al (2016) Malleable and recyclable poly(urea-urethane) thermosets bearing hindered urea bonds. Adv Mater 28:7646–7651. https://doi.org/10.1002/adma.201601242

    Article  CAS  Google Scholar 

  27. Truong TT, Thai SH, Nguyen HT, Phung DTT, Nguyen LT, Pham HQ, Nguyen L-TT (2019) Tailoring the hard–soft interface with dynamic Diels-Alder linkages in polyurethanes: toward superior mechanical properties and healability at mild temperature. Chem Mater 31:2347–2357. https://doi.org/10.1021/acs.chemmater.8b04624

    Article  CAS  Google Scholar 

  28. Lin C, Ge H, Wang T et al (2020) A self-healing and recyclable polyurethane/halloysite nanocomposite based on thermoreversible Diels-Alder reaction. Polymer 206:122894. https://doi.org/10.1016/j.polymer.2020.122894

    Article  CAS  Google Scholar 

  29. Shi J, Zheng T, Zhang Y, Guo B, Xu J (2020) Reprocessable cross-linked polyurethane with dynamic and tunable phenol–carbamate network. ACS Sustain Chem Eng 8:1207–1218. https://doi.org/10.1021/acssuschemeng.9b06435

    Article  CAS  Google Scholar 

  30. Cao S, Li S, Li M, Xu L, Ding H, Xia J, Zhang M, Huang K (2019) The thermal self-healing properties of phenolic polyurethane derived from polyphenols with different substituent groups. J Appl Polym Sci 136:47039. https://doi.org/10.1002/app.47039

    Article  CAS  Google Scholar 

  31. Han F, Xu B, Shah SAA, Zhang J, Cheng J (2020) Thermally reversible crosslinked polyurethanes based on blocking and deblocking reaction. Macromol Mater Eng 305:1900782. https://doi.org/10.1002/mame.201900782

    Article  CAS  Google Scholar 

  32. Shi J, Zheng T, Guo B, Xu J (2019) Solvent-free thermo-reversible and self-healable crosslinked polyurethane with dynamic covalent networks based on phenol-carbamate bonds. Polymer 181:121788. https://doi.org/10.1016/j.polymer.2019.121788

    Article  CAS  Google Scholar 

  33. Sun S, Gan X, Wang Z, Fu D, Xia H (2020) Dynamic healable polyurethane for selective laser sintering. Addit Manuf 33:101176. https://doi.org/10.1016/j.addma.2020.101176

    Article  CAS  Google Scholar 

  34. Liu Y, Zhang Z, Wang J, Xie T, Sun L, Yang K, Li Z (2021) Renewable tannic acid based self-healing polyurethane with dynamic phenol-carbamate network: simultaneously showing robust mechanical properties, reprocessing ability and shape memory. Polymer 228:123860. https://doi.org/10.1016/j.polymer.2021.123860

    Article  CAS  Google Scholar 

  35. Fu S, Zhu J, Chen S (2018) Tunable shape memory polyurethane networks cross-linked by 1,3,5,7-tetrahydroxyadamantane. Macromol Res 26:1035–1041. https://doi.org/10.1007/s13233-019-7005-8

    Article  CAS  Google Scholar 

  36. Xu X, Fan P, Ren J, Cheng Y, Ren J, Zhao J, Song R (2018) Self-healing thermoplastic polyurethane (TPU)/polycaprolactone (PCL)/multi-wall carbon nanotubes (MWCNTs) blend as shape-memory composites. Compos Sci Technol 168:255–262. https://doi.org/10.1016/j.compscitech.2018.10.003

    Article  CAS  Google Scholar 

  37. Chen Y, Zhao X, Luo C, Shao Y, Yin B (2020) A facile fabrication of shape memory polymer nanocomposites with fast light-response and self-healing performance. Compos Part A Appl Sci Manuf 135:105931. https://doi.org/10.1016/j.compositesa.2020.105931

    Article  CAS  Google Scholar 

  38. Hong S-M, Cha J-R, Kim J-G (2020) Preparation of body-temperature-triggered shape-memory polyurethane with biocompatibility using isosorbide and castor oil. Polym Test 91:106852. https://doi.org/10.1016/j.polymertesting.2020.106852

    Article  CAS  Google Scholar 

  39. Pal SK, Parashar M, Kanrar BB, Panda S, Roy N, Paira P, Panda D (2021) N-doped yellow-emissive carbon nanodots from Gallic acid: reaction engineering, stimuli-responsive red emission, and intracellular localization. J Phys Chem C 125:5748–5759. https://doi.org/10.1021/acs.jpcc.0c10117

    Article  CAS  Google Scholar 

  40. Acuña P, Zhang J, Yin G-Z, Liu X-Q, Wang D-Y (2021) Bio-based rigid polyurethane foam from castor oil with excellent flame retardancy and high insulation capacity via cooperation with carbon-based materials. J Mater Sci 56:2684–2701. https://doi.org/10.1007/s10853-020-05125-0

    Article  CAS  Google Scholar 

  41. Luo S, Fan L, Yang K, Zhong Z, Wu X, Ren T (2018) In situ and controllable synthesis of Ag NPs in tannic acid-based hyperbranched waterborne polyurethanes to prepare antibacterial polyurethanes/Ag NPs composites. RSC Adv 8:36571–36578. https://doi.org/10.1039/C8RA07575A

    Article  CAS  Google Scholar 

  42. Ren L, Ma X, Zhang J, Qiang T (2020) Preparation of Gallic acid modified waterborne polyurethane made from bio-based polyol. Polymer 194:122370. https://doi.org/10.1016/j.polymer.2020.122370

    Article  CAS  Google Scholar 

  43. Liang H, Wang S, He H, Wang M, Liu L, Lu J, Zhang Y, Zhang C (2018) Aqueous anionic polyurethane dispersions from castor oil. Ind Crop Prod 122:182–189. https://doi.org/10.1016/j.indcrop.2018.05.079

    Article  CAS  Google Scholar 

  44. Liu Y, Li Z, Zhang Z, Wang J, Sun L, Xie T (2021) Thermal-driven self-healing waterborne polyurethane with robust mechanical properties based on reversible phenol-carbamate network and Fe3+-catechol coordination bond. Prog Org Coating 153:106153. https://doi.org/10.1016/j.porgcoat.2021.106153

    Article  CAS  Google Scholar 

  45. Ghosh T, Karak N (2018) Biobased multifunctional macroglycol containing smart thermoplastic hyperbranched polyurethane elastomer with intrinsic self-healing attribute. ACS Sustain Chem Eng 6:4370–4381. https://doi.org/10.1021/acssuschemeng.8b00001

    Article  CAS  Google Scholar 

  46. Han Y, Jiang Y, Hu J (2020) Collagen incorporation into waterborne polyurethane improves breathability, mechanical property, and self-healing ability. Compos Part A Appl Sci Manuf 133:105854. https://doi.org/10.1016/j.compositesa.2020.105854

    Article  CAS  Google Scholar 

  47. Li M, Ding H, Yang X, Xu L, Xia J, Li S (2020) Preparation and properties of self-healing polyurethane elastomer derived from Tung-oil-based polyphenol. ACS Omega 5:529–536. https://doi.org/10.1021/acsomega.9b03082

    Article  CAS  Google Scholar 

  48. Cao S, Li S, Li M, Xu L, Ding H, Xia J, Zhang M, Huang K (2017) A thermal self-healing polyurethane thermoset based on phenolic urethane. Polym J 49:775–781. https://doi.org/10.1038/pj.2017.48

    Article  CAS  Google Scholar 

  49. Bai Y, Zhang J, Wen D, Gong P, Liu J, Ju J, Chen X (2020) A reconfigurable, self-healing and near infrared light responsive thermoset shape memory polymer. Compos Sci Technol 187:107940. https://doi.org/10.1016/j.compscitech.2019.107940

    Article  CAS  Google Scholar 

  50. Fang Y, Du X, Jiang Y, Du Z, Pan P, Cheng X, Wang H (2018) Thermal-driven self-healing and recyclable waterborne polyurethane films based on reversible covalent interaction. ACS Sustain Chem Eng 6:14490–14500. https://doi.org/10.1021/acssuschemeng.8b03151

    Article  CAS  Google Scholar 

  51. Xiang C, Chen H, Wang W, Dai Q, Liu Z, Yang B, Zhou Y, Zhou Y (2021) Transparency-tunable and moderate-temperature healable thermoplastic polyurethane elastomer based on bisphenol A chain-extender. J Appl Polym Sci 138:49794. https://doi.org/10.1002/app.49794

    Article  CAS  Google Scholar 

  52. Behera PK, Mondal P, Singha NK (2018) Self-healable and ultrahydrophobic polyurethane-POSS hybrids by Diels-Alder “Click” reaction: a new class of coating material. Macromolecules 51:4770–4781. https://doi.org/10.1021/acs.macromol.8b00583

    Article  CAS  Google Scholar 

  53. Lee S-H, Shin S-R, Lee D-S (2019) Self-healing of cross-linked PU via dual-dynamic covalent bonds of a Schiff base from cystine and vanillin. Mater Des 172:107774. https://doi.org/10.1016/j.matdes.2019.107774

    Article  CAS  Google Scholar 

  54. Yang S, Wang S, Du X, Du Z, Cheng X, Wang H (2020) Mechanically robust self-healing and recyclable flame-retarded polyurethane elastomer based on thermoreversible crosslinking network and multiple hydrogen bonds. Chem Eng J 391:123544. https://doi.org/10.1016/j.cej.2019.123544

    Article  CAS  Google Scholar 

  55. Gnanasekar P, Chen J, Goswami SR, Chen H, Yan N (2020) Sustainable shape-memory polyurethane from abietic acid: superior mechanical properties and shape recovery with tunable transition temperatures. Chemsuschem 13:5749–5761. https://doi.org/10.1002/cssc.202001983

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 21376153) and the Fundamental Research Funds for the Central University of China. The authors also acknowledge financial support from Sichuan University-Zschimmer & Schwarz CmbH & Co. KG Scholarships (2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengjun Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Chris Cornelius.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 81834 kb)

Supplementary file2 (MP4 10792 kb)

Supplementary file3 (DOCX 4068 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhang, Z., Fan, W. et al. Preparation of renewable gallic acid-based self-healing waterborne polyurethane with dynamic phenol–carbamate network: toward superior mechanical properties and shape memory function. J Mater Sci 57, 5679–5696 (2022). https://doi.org/10.1007/s10853-022-07000-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07000-6

Navigation