Skip to main content
Log in

Preparation and Properties of Polyurethane with Self-Healing Function by Solvent-Free Method

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Self-healing polyurethane materials with excellent mechanical properties have a wide range of applications, including textiles, clothing, leather, and flexible electronics. However, determining methods to obtain this material in green and environment-friendly ways is an interesting and challenging task. In this study, a series of self-healing polyurethane materials with soft segments containing diselenide bonds and hard segments including multiple hydrogen bonds were prepared using a solvent-free method. The characterization results demonstrated that the T–Se–SFPU–2 sample exhibited both favorable self-healing function as well as mechanical properties with a tensile breaking strength of 6.15 MPa, and the greatest healing effect was achieved after 6 h at room temperature under visible light. The research results further demonstrated that the hydrogen bond in the hard segment can considerably improve the mechanical properties of polyurethane. The best micro-phase separation was achieved by controlling the hydrogen bond content in the hard segment, achieving a force balance between the soft and hard segments, and finally, the optimal balance between the self-healing performance and mechanical strength of polyurethane was achieved. These results provide a new strategy for preparing polymers with different self-healing capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data are available from the corresponding authors upon reasonable request.

References

  1. Y. Yang, X.C. Ding, M.W. Urban, Chemical and physical aspects of self-healing materials. Prog. Polym. Sci. 49, 34–59 (2015). https://doi.org/10.1016/j.progpolymsci.2015.06.001

    Article  CAS  Google Scholar 

  2. L.F. Fan, M.Z. Rong, M.Q. Zhang, X.D. Chen, Repeated intrinsic self-healing of wider cracks in polymer via dynamic reversible covalent bonding molecularly combined with a two-way shape memory effect. ACS Appl. Mater. 10, 38538–38546 (2018). https://doi.org/10.1021/acsami.8b15636

    Article  CAS  Google Scholar 

  3. K. Van Tittelboom, N. De Belie, Self-healing in cementitious materials-a review. Materials 6, 2182–2217 (2013). https://doi.org/10.3390/ma6062182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. F. Zhang, P.F. Ju, M.Q. Pan, D.W. Zhang, Y. Huang, G.L. Li, X.G. Li, Self-healing mechanisms in smart protective coatings: a review. Corros Sci. 144, 74–88 (2018). https://doi.org/10.1016/j.corsci.2018.08.005

    Article  CAS  Google Scholar 

  5. Y.J. Tan, J.K. Wu, H.Y. Li, B.C.K. Tee, Self-healing electronic materials for a smart and sustainable future. ACS Appl. Mater. 10, 15331–15345 (2018). https://doi.org/10.1021/acsami.7b19511

    Article  CAS  Google Scholar 

  6. M. Enke, S. Bode, J. Vitz, F.H. Schacher, M.J. Harrington, M.D. Hager, U.S. Schubert, Self-healing response in supramolecular polymers based on reversible zinc-histidine interactions. Polymer 69, 274–282 (2015). https://doi.org/10.1016/j.polymer.2015.03.068

    Article  CAS  Google Scholar 

  7. J.K. Wang, C. Lv, Z.X. Li, J.P. Zheng, Facile preparation of polydimethylsiloxane elastomer with self-healing property and remoldability based on diels-alder chemistry. Macromol. Mater. Eng. 303, 1800089 (2018). https://doi.org/10.1002/mame.201800089

    Article  CAS  Google Scholar 

  8. P.A. Pratama, M. Sharifi, A.M. Peterson, G.R. Palmese, Room temperature self-healing thermoset based on the diels-alder reaction. ACS Appl. Mater. 5, 12425–12431 (2013). https://doi.org/10.1021/am403459e

    Article  CAS  Google Scholar 

  9. X.X. Wu, J.H. Li, G. Li, L. Ling, G.P. Zhang, R. Sun, C.P. Wong, Heat-triggered poly(siloxane-urethane) s based on disulfide bonds for self-healing application. J. Appl. Polym. Sci. 135, 46532 (2018). https://doi.org/10.1002/app.46532

    Article  CAS  Google Scholar 

  10. T. Li, Z.N. Xie, J. Xu, Y.X. Weng, B.H. Guo, Design of a self-healing cross-linked polyurea with dynamic cross-links based on disulfide bonds and hydrogen bonding. Eur. Polym. J. 107, 249–257 (2018). https://doi.org/10.1016/j.eurpolymj.2018.08.005

    Article  CAS  Google Scholar 

  11. S.B. Ji, W. Cao, Y. Yu, H.P. Xu, Dynamic diselenide bonds: exchange reaction induced by visible light without catalysis. Angew. Chem. Int. Ed 53, 6781–6785 (2014). https://doi.org/10.1002/anie.201403442

    Article  CAS  Google Scholar 

  12. S.B. Ji, W. Cao, H.P. Xu, A ROS eliminating nanocomposite film fabricated from diselenide-containing polymer micelles. Part. Part. Syst. Charact. 30, 1034–1038 (2013). https://doi.org/10.1002/ppsc.201300222

    Article  CAS  Google Scholar 

  13. W.H. Fan, Y. Jin, Y.H. Huang, J.Z. Pan, W.N. Du, Z.Y. Pu, Room-temperature self-healing and reprocessing of Diselenide-containing waterborne polyurethanes under visible light. J. Appl. Polym. Sci. 136, 47071 (2019). https://doi.org/10.1002/app.47071

    Article  CAS  Google Scholar 

  14. W.H. Fan, Y. Jin, L.J. Shi, W.N. Du, R. Zhou, Transparent, eco-friendly, super-tough “living” supramolecular polymers with fast room-temperature self-healability and reprocessability under visible light. Polymer 190, 122199 (2020). https://doi.org/10.1016/j.polymer.2020.122199

    Article  CAS  Google Scholar 

  15. F.Q. Fan, S.B. Ji, C.X. Sun, C. Liu, Y. Yu, Y. Fu, H.P. Xu, Wavelength-controlled dynamic metathesis: a light-driven exchange reaction between disulfide and diselenide bonds. Angew. Chem. Int. Ed 57, 16426–16430 (2018). https://doi.org/10.1002/anie.201810297

    Article  CAS  Google Scholar 

  16. R.C. Du, Z.C. Xu, C. Zhu, Y.W. Jiang, H.P. Yan, H.C. Wu, O. Vardoulis, Y.F. Cai, X.Y. Zhu, Z.N. Bao, Q.H. Zhang, X.D. Jia, A highly stretchable and self-healing supramolecular elastomer based on sliding crosslinks and hydrogen bonds. Adv. Funct 30, 1907139 (2020). https://doi.org/10.1002/adfm.201907139

    Article  CAS  Google Scholar 

  17. R. Araya-Hermosilla, G.M.R. Lima, P. Raffa, G. Fortunato, A. Pucci, M.E. Flores, I. Moreno-Villoslada, A.A. Broekhuis, F. Picchioni, Intrinsic self-healing thermoset through covalent and hydrogen bonding interactions. Eur. Polym. J. 81, 186–197 (2016). https://doi.org/10.1016/j.eurpolymj.2016.06.004

    Article  CAS  Google Scholar 

  18. Y.L. Rao, A. Chortos, R. Pfattner, F. Lissel, Y.C. Chiu, V. Feig, J. Xu, T. Kurosawa, X.D. Gu, C. Wang, M.Q. He, J.W. Chung, Z.N. Bao, Stretchable self-healing polymeric dielectrics cross-linked through metal-ligand coordination. J. Am. Chem. Soc. 138, 6020–6027 (2016). https://doi.org/10.1021/jacs.6b02428

    Article  CAS  PubMed  Google Scholar 

  19. I. Tunn, A.S. de Leon, K.G. Blank, M.J. Harrington, Tuning coiled coil stability with histidine-metal coordination. Nanoscale 10, 22725–22729 (2018). https://doi.org/10.1039/c8nr07259k

    Article  CAS  PubMed  Google Scholar 

  20. S. Burattini, B.W. Greenland, D.H. Merino, W.G. Weng, J. Seppala, H.M. Colquhoun, W. Hayes, M.E. Mackay, I.W. Hamley, S.J. Rowan, A healable supramolecular polymer blend based on aromatic pi-pi stacking and hydrogen-bonding interactions. J. Am. Chem. Soc. 132, 12051–12058 (2010). https://doi.org/10.1021/ja104446r

    Article  CAS  PubMed  Google Scholar 

  21. X.X. Chen, M.A. Dam, K.J. Ono, A. Mal, H.B. Shen, S.R. Nutt, K. Sheran, F. Wudl, A thermally re-mendable cross-linked polymeric material. Science 295, 1698–1702 (2002). https://doi.org/10.1126/science.1065879

    Article  CAS  PubMed  Google Scholar 

  22. S. Yu, R.C. Zhang, Q. Wu, T.H. Chen, P.C. Sun, Bio-inspired high-performance and recyclable cross-linked polymers. Adv. Mater. 25, 4912–4917 (2013). https://doi.org/10.1002/adma.201301513

    Article  CAS  PubMed  Google Scholar 

  23. C.H. Lin, D.K. Sheng, X.D. Liu, S.B. Xu, F. Ji, L. Dong, Y. Zhou, Y.M. Yang, NIR induced self-healing electrical conductivity polyurethane/graphene nanocomposites based on Diels-Alder reaction. Polymer 140, 150–157 (2018). https://doi.org/10.1016/j.polymer.2018.02.036

    Article  CAS  Google Scholar 

  24. A. Rekondo, R. Martin, A.R. de Luzuriaga, G. Cabanero, H.J. Grande, I. Odriozola, Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis. Mater. Horizons 1, 237–240 (2014). https://doi.org/10.1039/c3mh00061c

    Article  CAS  Google Scholar 

  25. K. Chen, Q.B. Ren, J.J. Li, D.F. Chen, C.X. Li, A highly stretchable and self-healing hydroxy-terminated polybutadiene elastomer. J. Saudi Chem. Soc. 24, 1034–1041 (2020). https://doi.org/10.1016/j.jscs.2020.11.002

    Article  CAS  Google Scholar 

  26. S.B. Ji, W. Cao, Y. Yu, H.P. Xu, Visible-light-induced self-healing diselenide-containing polyurethane elastomer. Adv. Mater. 27, 7740–7745 (2015). https://doi.org/10.1002/adma.201503661

    Article  CAS  PubMed  Google Scholar 

  27. V. Kupka, L. Vojtova, Z. Fohlerova, J. Jancar, Solvent free synthesis and structural evaluation of polyurethane films based on poly (ethylene glycol) and poly (caprolactone). Express Polym. Lett. 10, 479–492 (2016). https://doi.org/10.3144/expresspolymlett.2016.46

    Article  CAS  Google Scholar 

  28. J.X. Shi, T.Z. Zheng, B.H. Guo, J. Xu, Solvent-free thermo-reversible and self-healable crosslinked polyurethane with dynamic covalent networks based on phenol-carbamate bonds. Polymer 181, 121788 (2019). https://doi.org/10.1016/j.polymer.2019.121788

    Article  CAS  Google Scholar 

  29. P.K. Zhang, H.J. Fan, K. Hu, Y.M. Gu, Y. Chen, J. Yan, S.Q. Tian, Y.Z. He, olvent-free two-component polyurethane conjugated with crosslinkable hydroxyl-functionalized ammonium polyphosphate: Curing behaviors, flammability and mechanical properties. Prog. Org. Coat. 120, 88–99 (2018). https://doi.org/10.1016/j.porgcoat.2018.01.019

    Article  CAS  Google Scholar 

  30. K.A. Houton, G.M. Burslem, A.J. Wilson, Development of solvent-free synthesis of hydrogen-bonded supramolecular polyurethanes. Chem. Sci. 6, 2382–2388 (2015). https://doi.org/10.1039/c4sc03804e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. P.K. Zhang, Y. Zhou, H. Su, H. Lin, S.Q. Tian, Y. Chen, J. Yan, Y.Z. He, H.J. Fan, Hydroxyl-decorated ammonium polyphosphate as flame retardant reinforcing agent in solvent-free two-component polyurethane. Polym. Int. 66, 1598–1609 (2017). https://doi.org/10.1002/pi.5418

    Article  CAS  Google Scholar 

  32. Y. Yao, Z.Y. Xu, B. Liu, M. Xiao, J.H. Yang, W.G. Liu, Multiple H-bonding chain extender-based ultrastiff thermoplastic polyurethanes with autonomous self-healability, solvent-free adhesiveness, and AIE fluorescence. Adv. Funct. 31, 2006944 (2021). https://doi.org/10.1002/adfm.202006944

    Article  CAS  Google Scholar 

  33. H.P. Xie, X.D. Liu, D.K. Sheng, H.H. Wu, Y. Zhou, X.X. Tian, Y.L. Sun, B.R. Shi, Y.M. Yang, Novel titin-inspired high-performance polyurethanes with self-healing and recyclable capacities based on dual dynamic network. Polymer 230, 124096 (2021). https://doi.org/10.1016/j.polymer.2021.124096

    Article  CAS  Google Scholar 

  34. S.W. Zhang, R. Liu, J.Q. Jiang, C. Yang, M.Q. Chen, X.Y. Liu, Facile synthesis of waterborne UV-curable polyurethane/silica nanocomposites and morphology, physical properties of its nanostructured films. Prog. Org. Coat. 70, 1–8 (2011). https://doi.org/10.1016/j.porgcoat.2010.09.005

    Article  CAS  Google Scholar 

  35. Y. Lai, X. Kuang, P. Zhu, M.M. Huang, X. Dong, D.J. Wang, Colorless, transparent, robust, and fast scratch-self-healing elastomers via a phase-locked dynamic bonds design. Adv. Mater. 30, 1802556 (2018). https://doi.org/10.1002/adma.201802556

    Article  CAS  Google Scholar 

  36. D.L. Tian, F.F. Wang, Z.J. Yang, X.L. Niu, Q. Wu, P.C. Sun, High-performance polyurethane nanocomposites based on UPy-modified cellulose nanocrystals. Carbohydr. Polym. 219, 191–200 (2019). https://doi.org/10.1016/j.carbpol.2019.05.029

    Article  CAS  PubMed  Google Scholar 

  37. A.K. Barick, D.K. Tripathy, Preparation and characterization of thermoplastic polyurethane/organoclay nanocomposites by melt intercalation technique: effect of nanoclay on morphology, mechanical, thermal, and rheological properties. J. Appl. Polym. Sci. 117, 639–654 (2010). https://doi.org/10.1002/app.31303

    Article  CAS  Google Scholar 

  38. W.J. Choi, S.H. Kim, Y.J. Kim, S.C. Kim, Synthesis of chain-extended organifier and properties of polyurethane/clay nanocomposites. Polymer 45, 6045–6057 (2004). https://doi.org/10.1016/j.polymer.2004.06.033

    Article  CAS  Google Scholar 

  39. J. Tu, H. Xu, L. Liang, P.Y. Li, X.D. Guo, Preparation of high self-healing efficient crosslink HTPB adhesive for improving debonding of propellant interface. New J. Chem. 44, 19184–19191 (2020). https://doi.org/10.1039/d0nj04085a

    Article  CAS  Google Scholar 

  40. Y. Zhang, J. Maxted, A. Barber, C. Lowe, R. Smith, The durability of clear polyurethane coil coatings studied by FTIR peak fitting. Polym. Degrad. Stab. 98, 527–534 (2013). https://doi.org/10.1016/j.polymdegradstab.2012.12.003

    Article  CAS  Google Scholar 

  41. T. Su, G.Y. Wang, S.L. Wang, C.P. Hu, Fluorinated siloxane-containing waterborne polyurethaneureas with excellent hemocompatibility, waterproof and mechanical properties. Eur. Polym. 46, 472–483 (2010). https://doi.org/10.1016/j.eurpolymj.2009.12.009

    Article  CAS  Google Scholar 

  42. D.A. Wicks, Z.W. Wicks, Blocked isocyanates III: part B: uses and applications of blocked isocyanates. Prog. Org. Coat. 41, 1–83 (2001)

    Article  CAS  Google Scholar 

  43. A.K. Mishra, R.S. Mishra, R. Narayan, K.V.S.N. Raju, Effect of nano ZnO on the phase mixing of polyurethane hybrid dispersions. Prog. Org. Coat. 67, 405–413 (2010). https://doi.org/10.1016/j.porgcoat.2009.12.008

    Article  CAS  Google Scholar 

  44. W.H. Fan, Y. Jin, L.J. Shi, Mechanically robust and tough waterborne polyurethane films based on diselenide bonds and dual H-bonding interactions with fast visible-light-triggered room-temperature self-healability. Polym. Chem. 11, 5463–5474 (2020). https://doi.org/10.1039/d0py00897d

    Article  CAS  Google Scholar 

  45. Z.Q. Wang, Y.M. Zhou, Y.Q. Sun, Helical polyurethane-imide with optical activity based on binaphthyl units: preparation, characterization, and study of interchain hydrogen bonds. Polym. Bull. 63, 699–708 (2009). https://doi.org/10.1007/s00289-009-0153-9

    Article  CAS  Google Scholar 

  46. M.C. Kuo, R.J. Jeng, W.C. Su, S.A. Dai, Iterative synthesis of extenders of uniform chain lengths for making thermo-reversible polyurethane supramolecules. Macromolecules 41, 682–690 (2008). https://doi.org/10.1021/ma071393q

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Zhejiang Natural Science Foundation for its support (Approval number: LGG22E030011), Supported by the Department of Science and Technology of Zhejiang Province (Approval number: 2020C01148), Supported by Zhejiang Sci-Tech University (grant number 19012095-Y).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhichao Huang or Dongming Qi.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 29793 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Q., Huang, Z., Wang, L. et al. Preparation and Properties of Polyurethane with Self-Healing Function by Solvent-Free Method. Fibers Polym 24, 1903–1917 (2023). https://doi.org/10.1007/s12221-023-00191-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00191-y

Keywords

Navigation