Skip to main content

Advertisement

Log in

Elaborating Polyurethane Pillowy Soft Mat on Polypropylene Monofilament Surface with Stepwise Surface Treatments

  • Research Article
  • Invited Research Article for the 40th Anniversary of Chinese Journal of Polymer Science
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The dissatisfactory mechanical compliance between stiff polypropylene (PP) and soft human tissue is one of the main factors causing the implanted complication of PP mesh devices such as chronic abdominopelvic pain and mesh exposure. This work aims to improve the mechanical compliance of PP monofilament to human tissue without compromising the mechanical properties by elaborating polyurethane pillowy soft mat on the PP monofilament surface. Combining polarity pretreatment with dopamine-sedimentation, stiff PP monofilament can be wrapped up facilely and tightly in soft polyurethane to obtain PU/PP complex fiber with a core-shell structure. Notably, the interfacial shear strengths (IFSS) between stepwise treated PP monofilament and PU mat can effectively increase 586% compared to raw PP. This work provides a promising surface modification strategy to improve the interfacial adhesion between PP monofilament and PU mat. The obtained novel PU/PP complex fiber with pillowy soft mat would be a potential application in abdominal wall defects, hernia repair and pelvic organ prolapsed surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lu, Y.; Zhang, P. H. Comparison of polylactic acid/polycaprolactone membrane-coated composite meshes for repairing pelvic floor defects fabricated by two processing methods. Text. Res. J. 2016, 87, 1494–1508.

    Article  Google Scholar 

  2. Liu, M.; Wang, L.; Tong, X.; Dai, J.; Li, G.; Zhang, P.; Li, H. Antibacterial polymer nanofiber-coated and high elastin protein-expressing BMSCs incorporated polypropylene mesh for accelerating healing of female pelvic floor dysfunction. Nanotechnol. Rev. 2020, 9, 670–682.

    Article  CAS  Google Scholar 

  3. Faulk, D. M.; Londono, R.; Wolf, M. T.; Ranallo, C. A.; Carruthers, C. A.; Wildemann, J. D.; Dearth, C. L.; Badylak, S. F. ECM hydrogel coating mitigates the chronic inflammatory response to polypropylene mesh. Biomaterials 2014, 35, 8585–8595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu, Y.; Fang, Y.; Qian, J.; Liu, Z.; Yang, B.; Wang, X. Bio-inspired polydopamine functionalization of carbon fiber for improving the interfacial adhesion of polypropylene composites. RSC Adv. 2015, 5, 107652–107661.

    Article  CAS  Google Scholar 

  5. Deng, Y. M.; Ren, J. N.; Chen, G. P.; Li, G. W.; Guo, K.; Hu, Q. Y.; Wu, X. W.; Wang, G. F.; Gu, G. S.; Li, J. H. Evaluation of polypropylene mesh coated with biological hydrogels for temporary closure of open abdomen. J. Biomater. Appl. 2016, 31, 302–314.

    Article  CAS  PubMed  Google Scholar 

  6. Abhari, R. E.; Izett-Kay, M. L.; Morris, H. L.; Cartwright, R.; Snelling, S. J. B. Host-biomaterial interactions in mesh complications after pelvic floor reconstructive surgery. Nat. Rev. Urol. 2021, 18, 725–738.

    Article  CAS  PubMed  Google Scholar 

  7. Zhu, S.; Chen, J.; Li, H.; Cao, Y.; Yang, Y.; Feng, Z. Preparation and properties of montmorillonite/poly(ethylene glycol) grafted polypropylene/polypropylene nanocomposites. Appl. Clay Sci. 2014, 87, 303–310.

    Article  CAS  Google Scholar 

  8. Yu, Y.; Wang, Q.; Yuan, J.; Fan, X.; Wang, P.; Cui, L. Hydrophobic modification of cotton fabric with octadecylamine via laccase/TEMPO mediated grafting. Carbohydr. Polym. 2016, 137, 549–555.

    Article  CAS  PubMed  Google Scholar 

  9. Han, W. B.; Zhao, G. D.; Zhang, X. H.; Zhou, S. B.; Wang, P.; An, Y. M.; Xu, B. S. Graphene oxide grafted carbon fiber reinforced siliconborocarbonitride ceramics with enhanced thermal stability. Carbon 2015, 95, 157–165.

    Article  CAS  Google Scholar 

  10. Lee, C. Y.; Bae, J. H.; Kim, T. Y.; Chang, S. H.; Kim, S. Y. Using silane-functionalized graphene oxides for enhancing the interfacial bonding strength of carbon/epoxy composites. Compos. Part A-Appl. S. 2015, 75, 11–17.

    Article  CAS  Google Scholar 

  11. Changani, Z.; Razmjou, A.; Taheri-Kafrani, A.; Warkiani, M. E.; Asadnia, M. Surface modification of polypropylene membrane for the removal of iodine using polydopamine chemistry. Chemosphere 2020, 249, 126079.

    Article  CAS  PubMed  Google Scholar 

  12. Zhou, W.; Zhang, W.; Chen, Z. Universal biomimetic preparation and immobilization of layered double hydroxide films and adsorption behavior. Appl. Surf. Sci. 2017, 392, 153–161.

    Article  CAS  Google Scholar 

  13. Forooshani, P. K.; Polega, E.; Thomson, K.; Bhuiyan, M. S. A.; Pinnaratip, R.; Trought, M.; Kendrick, C.; Gao, Y.; Perrine, K. A.; Pan, L.; Lee, B. P. Antibacterial properties of mussel-inspired polydopamine coatings prepared by a simple two-step shaking-assisted method. Front. Chem. 2019, 7, 631.

    Article  CAS  Google Scholar 

  14. Sun, F.; Li, T. T.; Zhang, X.; Shiu, B. C.; Zhang, Y.; Ren, H. T.; Peng, H. K.; Lin, J. H.; Lou, C. W. In situ growth polydopamine decorated polypropylen melt-blown membrane for highly efficient oil/water separation. Chemosphere 2020, 254, 126873.

    Article  CAS  PubMed  Google Scholar 

  15. Kim, Y.; Kim, J. Carbonization of polydopamine-coating layers on boron nitride for thermal conductivity enhancement in hybrid polyvinyl alcohol (PVA) composites. Polymers 2020, 12, 1410.

    Article  PubMed Central  Google Scholar 

  16. Kwon, O. J.; Myung, S. W.; Lee, C. S.; Choi, H. S. Comparison of the surface characteristics of polypropylene films treated by Ar and mixed gas (Ar/O2) atmospheric pressure plasma. J. Colloid Interf. Sci. 2006, 295, 409–416.

    Article  CAS  Google Scholar 

  17. Armağan, O. G.; Kayaoglu, B. K.; Karakas, H. C.; Guner, F. S. Adhesion strength behaviour of plasma pre-treated and laminated polypropylene nonwoven fabrics using acrylic and polyurethane-based adhesives. J. Ind. Text. 2012, 43, 396–414.

    Article  Google Scholar 

  18. Chaves, C.; Alshomer, F.; Palgrave, R. G.; Kalaskar, D. M. Plasma surface modification of polyhedral oligomeric silsequioxanepoly(carbonate-urea) urethane with allylamine enhances the response and osteogenic differentiation of adipose-derived stem cells. ACS Appl. Mater. Interfaces 2016, 8, 18701–18709.

    Article  CAS  PubMed  Google Scholar 

  19. Xing, L.; Liu, L.; Huang, Y.; Jiang, D.; Jiang, B.; He, J. Enhanced interfacial properties of domestic aramid fiber-12 via high energy gamma ray irradiation. Compos. Part B: Eng. 2015, 69, 50–57.

    Article  CAS  Google Scholar 

  20. Lopez-Saucedo, F.; Lopez-Barriguete, J. E.; Flores-Rojas, G. G.; Gomez-Dorantes, S.; Bucio, E. Polypropylene graft poly(methyl methacrylate) graft poly(N-vinylimidazole) as a smart material for pH-controlled drug delivery. Int. J. Mol. Sci 2021, 23, 304.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Abudonia, K. S.; Saad, G. R.; Naguib, H. F.; Eweis, M.; Zahran, D.; Elsabee, M. Z. Surface modification of polypropylene film by grafting with vinyl monomers for the attachment of chitosan. J. Polym. Res. 2018, 25, 125.

    Article  Google Scholar 

  22. Malaika, A.; Morawa Eblagon, K.; Soares, O. S. G. P.; Pereira, M. F. R.; Figueiredo, J. L. The impact of surface chemistry of carbon xerogels on their performance in phenol removal from wastewaters via combined adsorption-catalytic process. Appl. Surf. Sci. 2020, 511, 145467.

    Article  CAS  Google Scholar 

  23. Morawa Eblagon, K.; Rey-Raap, N.; Figueiredo, J. L.; R. Pereira, M. F. Relationships between texture, surface chemistry and performance of N-doped carbon xerogels in the oxygen reduction reaction. Appl. Surf. Sci. 2021, 548, 149242.

    Article  CAS  Google Scholar 

  24. Li, B.; Gao, J.; Wang, X.; Fan, C.; Wang, H.; Liu, X. Surface modification of polypropylene battery separator by direct fluorination with different gas components. Appl. Surf. Sci. 2014, 290, 137–141.

    Article  CAS  Google Scholar 

  25. Cheng, Z.; Wu, P.; Li, B. Y.; Chen, T.; Liu, Y.; Ren, M. M.; Wang, Z. M.; Lai, W. C.; Wang, X.; Liu, X. Y. Surface chain cleavage behavior of PBIA fiber induced by direct fluorination. Appl. Surf. Sci. 2016, 384, 480–486.

    Article  CAS  Google Scholar 

  26. Prorokova, N. P.; Istratkin, V. A.; Kumeeva, T. Y.; Vavilova, S. Y.; Kharitonov, A. P.; Bouznik, V. M. Improvement of polypropylene nonwoven fabric antibacterial properties by the direct fluorination. RSC Adv. 2015, 5, 44545–44549.

    Article  CAS  Google Scholar 

  27. Ku, S. H.; Park, C. B. Human endothelial cell growth on mussel-inspired nanofiber scaffold for vascular tissue engineering. Biomaterials 2010, 31, 9431–9437.

    Article  CAS  PubMed  Google Scholar 

  28. Barros, N. R.; Chen, Y.; Hosseini, V.; Wang, W.; Nasiri, R.; Mahmoodi, M.; Yalcintas, E. P.; Haghniaz, R.; Mecwan, M. M.; Karamikamkar, S.; Dai, W.; Sarabi, S. A.; Falcone, N.; Young, P.; Zhu, Y.; Sun, W.; Zhang, S.; Lee, J.; Lee, K.; Ahadian, S.; Dokmeci, M. R.; Khademhosseini, A.; Kim, H. J. Recent developments in mussel-inspired materials for biomedical applications. Biomater. Sci. 2021, 9, 6653–6672.

    Article  CAS  PubMed  Google Scholar 

  29. Peng, S.; Jin, G.; Li, L.; Li, K.; Srinivasan, M.; Ramakrishna, S.; Chen, J. Multi-functional electrospun nanofibres for advances in tissue regeneration, energy conversion & storage, and water treatment. Chem. Soc. Rev. 2016, 45, 1225–1241.

    Article  CAS  PubMed  Google Scholar 

  30. Hu, W.; Lu, S.; Zhang, Z.; Zhu, L.; Wen, Y.; Zhang, T.; Ji, Z. Mussel-inspired copolymer-coated polypropylene mesh with anti-adhesion efficiency for abdominal wall defect repair. Biomater. Sci. 2019, 7, 1323–1334.

    Article  CAS  PubMed  Google Scholar 

  31. Hu, W.; Lu, S.; Ma, Y.; Ren, P.; Ma, X.; Zhou, N.; Zhang, T.; Ji, Z. Poly(dopamine)-inspired surface functionalization of polypropylene tissue mesh for prevention of intra-peritoneal adhesion formation. J. Mater. Chem. B 2017, 5, 575–585.

    Article  CAS  PubMed  Google Scholar 

  32. Hu, W.; Zhang, Z.; Lu, S.; Zhang, T.; Zhou, N.; Ren, P.; Wang, F.; Yang, Y.; Ji, Z. Assembled anti-adhesion polypropylene mesh with self-fixable and degradable in situ mussel-inspired hydrogel coating for abdominal wall defect repair. Biomater. Sci. 2018, 6, 3030–3041.

    Article  CAS  PubMed  Google Scholar 

  33. Hakur, V. K.; Vennerberg, D.; Kessler, M. R. Green aqueous surface modification of polypropylene for novel polymer nanocomposites. ACS Appl. Mater. Inter. 2014, 6, 9349–9356.

    Article  Google Scholar 

  34. Lukasiewicz, A.; Skopinska-Wisniewska, J.; Marszalek, A.; Molski, S.; Drewa, T. Collagen/polypropylene composite mesh biocompatibility in abdominal wall reconstruction. Plast. Reconstr. Surg. 2013, 131, 731e–740e.

    Article  CAS  PubMed  Google Scholar 

  35. Barski, D.; Gerullis, H.; Georgas, E.; Bär, A.; Lammers, B.; Ramon, A.; Ysebaert, D.; Klosterhalfen, B.; Boros, M.; Otto, T. Coating of mesh grafts for prolapse and urinary incontinence repair with autologous plasma: exploration stage of a surgical innovation. BioMed Res. Int. 2014, 2014, 296498.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ding, M. M.; Song, N. J.; He, X. L.; Li, J. H.; Tan, H.; Fu, Q.; Gu, Q. Toward the next-generation nanomedicines design of multifunctional multiblock polyurethanes for effective cancer treatment. ACS Nano 2013, 7, 1918–1928.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, Y.; He, W.; Li, J.; Wang, K.; Li, J.; Tan, H.; Fu, Q. Gemini quaternary ammonium salt waterborne biodegradable polyurethanes with antibacterial and biocompatible properties. Mater. Chem. Front. 2017, 1, 361–368.

    Article  CAS  Google Scholar 

  38. Li, B.; Davidson, J. M.; Guelcher, S. A. The effect of the local delivery of platelet-derived growth factor from reactive two-component polyurethane scaffolds on the healing in rat skin excisional wounds. Biomaterials 2009, 30, 3486–3494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shrestha, B. K.; Shrestha, S.; Tiwari, A. P.; Kim, J. I.; Ko, S. W.; Kim, H. J.; Park, C. H.; Kim, C. S. Bio-inspired hybrid scaffold of zinc oxide-functionalized multi-wall carbon nanotubes reinforced polyurethane nanofibers for bone tissue engineering. Mater. Design 2017, 133, 69–81.

    Article  CAS  Google Scholar 

  40. Zhang, J.; Woodruff, T. M.; Clark, R. J.; Martin, D. J.; Minchin, R. F. Release of bioactive peptides from polyurethane films in vitro and in vivo: effect of polymer composition. Acta Biomater. 2016, 41, 264–272.

    Article  CAS  PubMed  Google Scholar 

  41. Song, N. J.; Jiang, X.; Li, J. H.; Pang, Y.; Li, J. S.; Tan, H.; Fu, Q. The degradation and biocompatibility of waterborne biodegradable polyurethanes for tissue engineering. Chinese J. Polym. Sci. 2013, 31, 1451–1462.

    Article  CAS  Google Scholar 

  42. Song, Y. Q.; Gao, Y. L.; Pan, Z. C.; Zhang, Y.; Li, J. H.; Wang, K. J.; Li, J. S.; Tan, H.; Fu, Q. Preparation and characterization of controlled heparin release waterborne polyurethane coating systems. Chinese J. Polym. Sci. 2016, 34, 679–687.

    Article  CAS  Google Scholar 

  43. Song, N. J.; Zhou, L. J.; Liu, W. K.; He, X. L.; Pan, Z. C.; Ding, M. M.; Wan, X. Y.; Li, J. H.; Tan, H.; Luo, F.; Fu, Q. Effect of trastuzumab on the micellization properties, endocytic pathways and antitumor activities of polyurethane-based drug delivery system. Chinese J. Polym. Sci. 2017, 35, 909–923.

    Article  CAS  Google Scholar 

  44. Xu, C.; Huang, Y.; Tang, L.; Hong, Y. oownnitial-mouulus biodegradable polyurethane elastomers for soft tissue regeneration. ACS Appl. Mater. Interfaces 2017, 9, 2169–2180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hao, H.; Deng, Y.; Wu, Y.; Liu, S.; Lin, W.; Li, J.; Luo, F.; Tan, H. Synthesis of biodegradable waterborne phosphatidylcholine polyurethanes for soft tissue engineering applications. Regen. Biomater. 2017, 4, 69–79.

    Article  CAS  Google Scholar 

  46. Zhu, J.; Chen, D.; Du, J.; Chen, X.; Wang, J.; Zhang, H.; Chen, S.; Wu, J.; Zhu, T.; Mo, X. Mechanical matching nanofibrous vascular scaffold with effective anticoagulation for vascular tissue engineering. Compos. Part B: Eng. 2020, 186, 107788.

    Article  CAS  Google Scholar 

  47. Bellon, J. M.; Rodriguez, M.; Garcia-Honduvilla, N.; Pascual, G.; Gomez Gil, V.; Bujan, J. Peritoneal effects of prosthetic meshes used to repair abdominal wall defects: monitoring adhesions by sequentual laparoscopy. J. Laparoendosc. Adv. A 2007, 17, 160–166.

    Article  Google Scholar 

  48. Gostev, A. A.; Karpenko, A. A.; Laktionov, P. P. Polyurethanes in cardiovascular prosthetics. Polym. Bull. 2018, 75, 4311–4325.

    Article  CAS  Google Scholar 

  49. Zhao, X.; Ming, H.; Wang, Y.; Luo, F.; Li, Z.; Li, J.; Tan, H.; Fu, Q. Mussel-inspired, injectable polyurethane tissue adhesives demonstrate in situ gel formation under mild conditions. ACS Appl. Bio. Mater. 2021, 4, 5352–5361.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang, L.; Liang, J.; Jiang, C.; Liu, Z.; Sun, L.; Chen, S.; Xuan, H.; Lei, D.; Guan, Q.; Ye, X.; You, Z. Peptidoglycan-inspired autonomous ultrafast self-healing bio-friendly elastomers for bio-integrated electronics. Natl. Sci. Rev. 2021, 8, nwaa154.

    Article  CAS  PubMed  Google Scholar 

  51. Liu, Z. H.; Huang, J. Q.; Sun, L. J.; Lei, D.; Cao, J.; Chen, S.; Shih, W. C.; Qing, F. L.; You, Z. W. PPC-based reactive hot melt polyurethane adhesive (RHMPA)—efficient glues for multiple types of substrates. Chinese J. Polym. Sci. 2017, 36, 58–64.

    Article  Google Scholar 

  52. Spírková, M.; Pavličević, J.; Aguilar Costumbre, Y.; Hodan, J.; Urbanová, M.; Krejčíková, S. Mechanically strong waterborne poly(urethane-urea) films and nanocomposite films. J. Appl. Polym. Sci. 2020, 138, e50011.

    Article  Google Scholar 

  53. Lanzalaco, S.; Turon, P.; Weis, C.; Aleman, C.; Armelin, E. The mechanism of adhesion and graft polymerization of a PNIPAAm thermoresponsive hydrogel to polypropylene meshes. Soft Matter 2019, 15, 3432–3442.

    Article  CAS  PubMed  Google Scholar 

  54. Paradkar, R. P.; Sakhalkar, S. S.; He, X. J.; Ellison, M. S. On-line estimation of molecular orientation in polypropylene fibers using polarized Raman spectroscopy. Appl. Spectrosc. 2001, 55, 534–539.

    Article  CAS  Google Scholar 

  55. Cheng, Z.; Li, B. Y.; Huang, J. Y.; Chen, T.; Liu, Y.; Wang, X.; Liu, X. Y. Covalent modification of Aramid fibers’ surface via direct fluorination to enhance composite interfacial properties. Materials and Design 2016, 106, 216–225.

    Article  CAS  Google Scholar 

  56. Abrishambaf, A.; Barros, J. A. O.; Cunha, V. M. C. F.; Frazão, C. Time dependent behaviour of fibre pull-out in self-compacting concrete. Cement Concrete Comp. 2017, 77, 14–28.

    Article  CAS  Google Scholar 

  57. Ramzy, A.; Beermann, D.; Steuernagel, L.; Meiners, D.; Ziegmann, G. Developing a new generation of sisal composite fibres for use in industrial applications. Compos. Part B: Eng. 2014, 66, 287–298.

    Article  CAS  Google Scholar 

  58. Kauffmann-Weiss, S.; Scheerbaum, N.; Liu, J.; Klauss, H.; Schultz, L.; Mäder, E.; Häßler, R.; Heinrich, G.; Gutfleisch, O. Reversible magnetic field induced strain in Ni2MnGa-polymer-composites. Adv. Eng. Mater. 2012, 14, 20–27.

    Article  CAS  Google Scholar 

  59. Golaz, B.; Michaud, V.; Månson, J. A. E. Adhesion of thermoplastic polyurethane elastomer to galvanized steel. Int. J. Adhes. Adhes. 2011, 31, 805–815.

    Article  CAS  Google Scholar 

  60. Zhou, X.; Tu, W.; Hu, J. Preparation and characterization of two-component waterborne polyurethane comprised of water-soluble acrylic resin and HDI biuret. Chin. J. Chem. Eng. 2006, 14, 99–104.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51873122 and 51733005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie-Hua Li or Hong Tan.

Additional information

Notes

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, CX., Zhang, T., Song, YQ. et al. Elaborating Polyurethane Pillowy Soft Mat on Polypropylene Monofilament Surface with Stepwise Surface Treatments. Chin J Polym Sci 40, 1389–1401 (2022). https://doi.org/10.1007/s10118-022-2821-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2821-2

Keywords

Navigation