Skip to main content

Advertisement

Log in

Surface Modification of Ni–Ti Stents by Biodegradable Binary PVA/Propolis Electrospun Nano Fibers

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Ni–Ti stents are perceived as foreign substances in the body and cause damage to the cell wall. Therefore, binary PVA/Propolis (PVA/PP) biopolymer nanofibers were spun on commercial Ni–Ti stent surfaces with electrospinning method to overcome these problems. In this study, the spun coatings' suspension mixtures were prepared in different ratios as 10 wt% PVA-1 wt% PP, 10 wt% PVA-3 wt% PP, 10 wt% PVA-5 wt% PP. The successively fabricated nanofibers (< 100 nm) were characterized with a stereo microscope, SEM, FTIR, AFM, and TG, dissolution and antibacterial tests. From the results, the best-spun rates and spun amounts were determined as 10 wt% PVA-5 wt% PP composition. The fiber coatings well adhere to the Ni–Ti stent surface and form a fiber structure without gaps. PVA/PP decomposition temperature decreased compared to PVA with increasing propolis from TG analysis. The strong hydrogen bonds were formed between the PVA and PP from FTIR analyses. The antibacterial effect against Escherichia Coli. shown for PVA/PP composition. In bioactivity test, the higher pH change (6.98 to 7.65) and mass change (0.0165 to 0.0565 g) were observed for 10 wt% PVA-5 wt% PP coated Ni–Ti stent in Ringer’s solution depends on the immersion day. 10PVA-5PP coated sample had also been found that dissolves in artificial body fluid and more nanofiber structure. More nanofibers (diameter 30–35 nm) and less beadless morphology were fabricated for 10PVA-5PP. The higher surface roughness values (Ra: 68.95 nm) were observed after electrospun 10PVA-5PP fibers compared to uncoated samples (Ra: 22.60 nm) with AFM analyzes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lupi, A.; Ugo, F.; de Martino, L.; Infantino, V.; Iannaccone, M.; Iorio, S.; Di Leo, A.; Colangelo, S.; Zanera, M.; Schaffer, A.; Persampieri, S.; Garbo, R.; Senatore, G.: Real-world experience with a tapered biodegradable polymer-coated sirolimus-eluting stent in patients with long coronary artery stenoses. Cardiol. Res. (2020). https://doi.org/10.14740/cr1055

    Article  Google Scholar 

  2. Kobayashi, Y.; Okura, H.; Kume, T.; Yamada, R.; Kobayashi, Y.; Fukuhara, K.; Koyama, T.; Nezuo, S.; Neishi, Y.; Hayashida, A.; Kawamoto, T.; Yoshida, K.: Impact of target lesion coronary calcification on stent expansion. Circ. J. (2014). https://doi.org/10.1253/circj.cj-14-0108

    Article  Google Scholar 

  3. Tammareddi, S.; Sun, G.; Li, Q.: Multiobjective robust optimization of coronary stents. Mater. Des. (2016). https://doi.org/10.1016/j.matdes.2015.10.153

    Article  Google Scholar 

  4. Wang, J.; Li, B.; Li, Z.; Ren, K.; Jin, L.; Zhang, S.; Chang, H.; Sun, Y.; Ji, J.: Electropolymerization of dopamine for surface modification of complex-shaped cardiovascular stents. Biomaterials (2014). https://doi.org/10.1016/j.biomaterials.2014.05.047

    Article  Google Scholar 

  5. Kandaswamy, E.; Zuo, L.: Recent advances in treatment of coronary artery disease: role of science and technology. Int. J. Mol. Sci. (2018). https://doi.org/10.3390/ijms19020424

    Article  Google Scholar 

  6. Hu, T.; Yang, J.; Cui, K.; Rao, Q.; Yin, T.; Tan, L.; Zhang, Y.; Li, Z.; Wang, G.: Controlled slow-release drug-eluting stents for the prevention of coronary restenosis: recent progress and future prospects. ACS Appl. Mater. Interfaces (2015). https://doi.org/10.1021/acsami.5b01993

    Article  Google Scholar 

  7. Htay, T.; Liu, M.W.: Drug-eluting stent: a review and update. Vasc. Health Risk Manag. (2005). https://doi.org/10.2147/vhrm.2005.1.4.263

    Article  Google Scholar 

  8. Ma, X.; Oyamada, S.; Gao, F.; Wu, T.; Robich, M.P.; Wu, H.; Wang, X.; Buchholz, B.; McCarthy, S.; Gu, Z.; Bianchi, C.F.; Sellke, F.W.; Laham, R.: Paclitaxel/sirolimus combination coated drug-eluting stent: in vitro and in vivo drug release studies. J. Pharm. Biomed. Anal. (2011). https://doi.org/10.1016/j.jpba.2010.10.027

    Article  Google Scholar 

  9. Chen, S.; Yao, Z.; Guan, Y.; Yang, H.; Shahzad, M.B.; Wu, Y.; Zhang, B.; Shen, L.; Yang, K.: High nitrogen stainless steel drug-eluting stent—assessment of pharmacokinetics and preclinical safety in vivo. Bioact. Mater. (2020). https://doi.org/10.1016/j.bioactmat.2020.06.006

    Article  Google Scholar 

  10. Nathani, S.; Raheem, A.; Sanadhya, H.; Purohit, P.C.; Patel, R.; Alane, P.K.; Agarwal, D.; Sinha, R.: Twelve-month clinical outcomes of sirolimus-eluting stent in coronary artery disease: an experience in real-world Indian patients. Anatol. J. Cardiol. (2020). https://doi.org/10.14744/AnatolJCardiol.2020.98452

    Article  Google Scholar 

  11. Pellegrini, D.O.; Gomes, V.O.; Lasevitch, R.; Smidt, L.; Azeredo, M.A.; Ledur, P.; Bodanese, R.; Sinnott, L.; Moriguchi, E.; Caramori, P.: Efficacy and safety of drug-eluting stents in the real world: 8-year follow-up. Arq. Bras. Cardiol. (2014). https://doi.org/10.5935/abc.20140110

    Article  Google Scholar 

  12. Weaver, J.D.; Ku, D.N.: Mechanical evaluation of polyvinyl alcohol cryogels for covered stents. J. Med. Dev. (2010). https://doi.org/10.1115/1.4001863

    Article  Google Scholar 

  13. Yuan, J.G.; Ohki, T.; Marin, M.L.; Quintos, R.T.; Krohn, D.L.; Beitler, J.J.; Veith, F.J.: The effect of nonporous PTFE-covered stents on intimal hyperplasia following balloon arterial injury in minipigs. J. Endovasc. Surg. (1998). https://doi.org/10.1583/1074-6218(1998)005%3c0349:TEONPC%3e2.0.CO;2

    Article  Google Scholar 

  14. Lee, W.-C.; Hsueh, S.-K.; Fang, C.-Y.; Wu, C.-J.; Hang, C.-L.; Fang, H.-Y.: Clinical outcomes following covered stent for the treatment of coronary artery perforation. J. Interv. Cardiol. (2016). https://doi.org/10.1111/joic.12347

    Article  Google Scholar 

  15. Kufner, S.; Schacher, N.; Ferenc, M.; Schlundt, C.; Hoppmann, P.; Abdel-Wahab, M.; Mayer, K.; Fusaro, M.; Byrne, R.A.; Kastrati, A.: Outcome after new generation single-layer polytetrafluoroethylene-covered stent implantation for the treatment of coronary artery perforation. Catheter. Cardiovasc. Interv.: Off. J. Soc. Cardiac Angiogr. Interv. (2019). https://doi.org/10.1002/ccd.27979

    Article  Google Scholar 

  16. Strohbach, A.; Busch, R.: Polymers for cardiovascular stent coatings. Int. J. Polym. Sci. (2015). https://doi.org/10.1155/2015/782653

    Article  Google Scholar 

  17. Windecker, S.; Meier, B.: Late coronary stent thrombosis. Circulation (2007). https://doi.org/10.1161/CIRCULATIONAHA.106.683995

    Article  Google Scholar 

  18. Theron, J.P.; Knoetze, J.H.; Sanderson, R.D.; Hunter, R.; Mequanint, K.; Franz, T.; Zilla, P.; Bezuidenhout, D.: Modification, crosslinking and reactive electrospinning of a thermoplastic medical polyurethane for vascular graft applications. Acta Biomater. (2010). https://doi.org/10.1016/j.actbio.2010.01.013

    Article  Google Scholar 

  19. Hu, Z.; Li, Z.; Hu, L.; He, W.; Liu, R.; Qin, Y.; Wang, S.: The in vivo performance of small-caliber nanofibrous polyurethane vascular grafts. BMC Cardiovasc. Disord. (2012). https://doi.org/10.1186/1471-2261-12-115

    Article  Google Scholar 

  20. Lin, M.C.; Lou, C.W.; Lin, J.Y.; Lin, T.A.; Chou, S.Y.; Chen, Y.S.; Lin, J.H.: Using spray-coating method to form PVA coronary artery stents: structure and property evaluations. J. Polym. Res. (2018). https://doi.org/10.1007/s10965-018-1497-3

    Article  Google Scholar 

  21. Guney, A.; Karaman, I.; Oner, M.; Yerer, M.B.: Effects of propolis on fracture healing: an experimental study. Phytother. Res.: PTR (2011). https://doi.org/10.1002/ptr.3470

    Article  Google Scholar 

  22. Zedan, H.; Hofny, E.R.M.; Ismail, S.A.: Propolis as an alternative treatment for cutaneous warts. Int. J. Dermatol. (2009). https://doi.org/10.1111/j.1365-4632.2009.04184.x

    Article  Google Scholar 

  23. Callejo, A.; Armentia, A.; Lombardero, M.; Asensio, T.: Propolis, a new bee-related allergen. Allergy (2001). https://doi.org/10.1034/j.1398-9995.2001.056006579.x

    Article  Google Scholar 

  24. Hubbezoglu, İ; Ozan, U.; Sümer, Z.: Effects on Escherichia Coli of solutions containing propolis and potassium titanium phosphate laser in robot canal irrigation. J. Dent. Fac. Atatürk Uni. 21, 15–21 (2011)

    Google Scholar 

  25. Dogan, N.; Hayoglu, İ: Propolis and areas of usage. J. Agric. Fac. HR. U. 16, 39–48 (2012)

    Google Scholar 

  26. Wassel, M.O.; Khattab, M.A.: Antibacterial activity against Streptococcus mutans and inhibition of bacterial induced enamel demineralization of propolis, miswak, and chitosan nanoparticles based dental varnishes. J. Adv. Res. (2017). https://doi.org/10.1016/j.jare.2017.05.006

    Article  Google Scholar 

  27. Bhardwaj, N.; Kundu, S.C.: Electrospinning: a fascinating fiber fabrication technique. Biotechnol. Adv. (2010). https://doi.org/10.1016/j.biotechadv.2010.01.004

    Article  Google Scholar 

  28. Thenmozhi, S.; Dharmaraj, N.; Kadirvelu, K.; Kim, H.Y.: Electrospun nanofibers: new generation materials for advanced applications. Mater. Sci. Eng., B (2017). https://doi.org/10.1016/j.mseb.2017.01.001

    Article  Google Scholar 

  29. Ahmed, F.E.; Lalia, B.S.; Hashaikeh, R.: A review on electrospinning for membrane fabrication: challenges and applications. Desalination (2015). https://doi.org/10.1016/j.desal.2014.09.033

    Article  Google Scholar 

  30. Gürbüz, M.; Günkaya, G.; Doğan, A.: Electrospray deposition of SnO2 films from precursor solution. Surf. Eng. (2016). https://doi.org/10.1080/02670844.2015.1108048

    Article  Google Scholar 

  31. Castaldo, S.; Capasso, F.: Propolis, an old remedy used in modern medicine. Fitoterapia (2002). https://doi.org/10.1016/s0367-326x(02)00185-5

    Article  Google Scholar 

  32. Bayrami, M.; Bayrami, A.; Habibi-Yangjeh, A.; Shafeeyan, M.S.; Feizpoor, S.; Arvanagh, F.M.; Nourani, M.R.; Taheri, R.A.: Biologically-synthesised ZnO/CuO/Ag nanocomposite using propolis extract and coated on the gauze for wound healing applications. IET Nanobiotechnol. (2020). https://doi.org/10.1049/iet-nbt.2020.0024

    Article  Google Scholar 

  33. O’Donnell, K.L.; Oporto-Velásquez, G.S.; Comolli, N.: Evaluation of acetaminophen release from biodegradable poly (vinyl alcohol) (PVA) and nanocellulose films using a multiphase release mechanism. Nanomaterials (Basel, Switzerland) (2020). https://doi.org/10.3390/nano10020301

    Article  Google Scholar 

  34. Lin, M.C.; Lou, C.W.; Lin, J.Y.; Lin, T.A.; Chen, Y.S.; Lin, J.H.: Biodegradable polyvinyl alcohol vascular stents: structural model and mechanical and biological property evaluation. Mater. Sci. Eng. C Mater. Biol. Appl. (2018). https://doi.org/10.1016/j.msec.2018.05.030

    Article  Google Scholar 

  35. Zeighampour, F.; Alihosseini, F.; Morshed, M.; Rahimi, A.A.: Comparison of prolonged antibacterial activity and release profile of propolis-incorporated PVA nanofibrous mat, microfibrous mat, and film. J. Appl. Polym. Sci. (2018). https://doi.org/10.1002/app.45794

    Article  Google Scholar 

  36. Shao, C.; Kim, H.-Y.; Gong, J.; Ding, B.; Lee, D.-R.; Park, S.-J.: Fiber mats of poly(vinyl alcohol)/silica composite via electrospinning. Mater. Lett. (2003). https://doi.org/10.1016/S0167-577X(02)01036-4

    Article  Google Scholar 

  37. Lee, H.W.; Karim, M.R.; Park, J.H.; Ghim, H.D.; Choi, J.H.; Kim, K.; Deng, Y.; Yeum, J.H.: Poly(vinyl alcohol)/chitosan oligosaccharide blend submicrometer fibers prepared from aqueous solutions by the electrospinning method. J. Appl. Polym. Sci. (2009). https://doi.org/10.1002/app.29033

    Article  Google Scholar 

  38. Holland, B.J.; Hay, J.N.: The thermal degradation of poly(vinyl alcohol). Polymer (2001). https://doi.org/10.1016/S0032-3861(01)00166-5

    Article  Google Scholar 

  39. Marcucci, M.C.; Cunha, I.B.S.; Sanchez, E.M.S.; Passarelli Gonçalves, C.; Cedeño-Pinos, C.; Bañón, S.: Analysis of Brazilian propolis by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) characteristics of crude resin, ethanolic extracts, wax and isolated compounds. Bee World (2022). https://doi.org/10.1080/0005772X.2022.2076973

    Article  Google Scholar 

  40. Varmuza, K.: Chemometrics in Practical Applications. IntechOpen, London (2012)

    Book  Google Scholar 

  41. İc, Y.; Serdaroglu, D.; Niranç, B.; Akyol, E.: Development of a decision support system for stent selection. J. Turk. Manag. 1, 3–26 (2017)

    Google Scholar 

  42. Sousa, J.E.; Costa, M.A.; Tuzcu, E.M.; Yadav, J.S.; Ellis, S.: New frontiers in interventional cardiology. Circulation (2005). https://doi.org/10.1161/01.CIR.0000153802.70682.22

    Article  Google Scholar 

  43. Balgová, Z.; Palou, M.; Wasserbauer, J.; Lutišanová, G.; Kozánkováb, J.: Preparation, characterization and in vitro bioactivity of polyvinyl alcohol-hydroxyapatite biphasique membranes. Acta Chim. Slovaca (2013). https://doi.org/10.2478/acs-2013-0002

    Article  Google Scholar 

  44. Ashraf, A.A.; Zebarjad, S.M.; Hadianfard, M.J.: The cross-linked polyvinyl alcohol/hydroxyapatite nanocomposite foam. J. Market. Res. (2019). https://doi.org/10.1016/j.jmrt.2019.02.024

    Article  Google Scholar 

  45. Kharitonov, V.: A review of the compatibility of liposome bupivacaine with other drug products and commonly used implant materials. Postgrad. Med. (2014). https://doi.org/10.3810/pgm.2014.01.2733

    Article  Google Scholar 

  46. Bernal-Ballen, A.; Lopez-Garcia, J.; Merchan-Merchan, M.-A.; Lehocky, M.: Synthesis and characterization of a bioartificial polymeric system with potential antibacterial activity: chitosan-polyvinyl alcohol-ampicillin. Molecules (Basel, Switzerland) (2018). https://doi.org/10.3390/molecules23123109

    Article  Google Scholar 

  47. Galya, T.; Sedlařík, V.; Kuřitka, I.; Novotný, R.; Sedlaříková, J.; Sáha, P.: Antibacterial poly(vinyl alcohol) film containing silver nanoparticles: Preparation and characterization. J. Appl. Polym. Sci. (2008). https://doi.org/10.1002/app.28908

    Article  Google Scholar 

  48. Majiene, D.; Trumbeckaite, S.; Pavilonis, A.; Savickas, A.; Martirosyan, D.: Antifungal and antibacterial activity of propolis. CNF (2007). https://doi.org/10.2174/1573401310703040304

    Article  Google Scholar 

  49. Vargas-Sánchez, R.D.; Torrescano-Urrutia, G.R.; Mendoza-Wilson, A.M.; Vallejo-Galland, B.; Acedo-Félix, E.; SánchezEscalante, J.J.; Peñalba-Garmendia, M.C.; Sánchez-Escalante, A.: Mecanismos Involucrados en la Actividad Antioxidante y Antibacteriana del Propóleos. Biotecnia (2015). https://doi.org/10.18633/bt.v16i1.31

    Article  Google Scholar 

  50. Gonsales, G.Z.; Orsi, R.O.; Fernandes Júnior, A.; Rodrigues, P.; Funari, S.R.C.: Antibacterial activity of propolis collected in different regions of Brazil. J. Venom. Anim. Toxins Incl. Trop. Dis. (2006). https://doi.org/10.1590/S1678-91992006000200009

    Article  Google Scholar 

  51. Daraghmeh, J.; Imtara, H.: In vitro evaluation of Palestinian propolis as a natural product with antioxidant properties and antimicrobial activity against multidrug-resistant clinical isolates. J. Food Qual. (2020). https://doi.org/10.1155/2020/8861395

    Article  Google Scholar 

  52. Silva-Carvalho, R.; Baltazar, F.; Almeida-Aguiar, C.: Propolis: a complex natural product with a plethora of biological activities that can be explored for drug development. Evid.-Based Complement. Altern. Med.: eCAM (2015). https://doi.org/10.1155/2015/206439

    Article  Google Scholar 

  53. Muli, E.M.; Maingi, J.M.: Antibacterial activity of Apis mellifera L. propolis collected in three regions of Kenya. J. Venom. Anim. Toxins Incl. Trop. Dis (2007). https://doi.org/10.1590/S1678-91992007000300008

    Article  Google Scholar 

Download references

Acknowledgements

Thanks the undergraduate students Efdal Şener and Oğulcan Altıntaş for their partially contribution to experimental studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuğba Mutuk.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mutuk, T., Gürbüz, M. Surface Modification of Ni–Ti Stents by Biodegradable Binary PVA/Propolis Electrospun Nano Fibers. Arab J Sci Eng 48, 3391–3402 (2023). https://doi.org/10.1007/s13369-022-07179-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07179-5

Keywords

Navigation