Skip to main content
Log in

Acceptor-acceptor-type Organoboron Conjugated Polymers: Effect of Backbone Configuration on Thermoelectric Performance

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The development of n-type polymer thermoelectrics lags far behind that of p-type ones in view of material diversity and performance. New structural insights into the thermoelectric performance are needed for efficient n-type polymer thermoelectric materials. Herein, we developed three acceptor-acceptor type organoboron polymers and investigated the effect of backbone configuration on thermoelectric performance. The three polymers are designed based on double B←N bridged bipyridine (BNBP) unit with monomeric thieno[3,4-c]pyrrole-4,6-dione (TPD), TPD dimer and TPD trimer as the copolymerizing units, respectively. The three polymers show similar low LUMO energy levels but different backbone configuration. Compared with the wavy backbone configuration, the pseudo-straight backbone configuration imparts the polymer with much enhanced crystallinity and electron mobility. As a result, after n-doping, the polymer with pseudo-straight configuration shows much higher electronic conductivity and power factor. We think these findings could serve as important guidelines for molecular design toward efficient n-type polymer thermoelectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahk, J. H.; Fang, H.; Yazawa, K.; Shakouri, A. Flexible thermoelectric materials and device optimization for wearable energy harvesting. J. Mater. Chem. C 2015, 3, 10362–10374.

    Article  CAS  Google Scholar 

  2. Wang, Y.; Yang, L.; Shi, X. L.; Shi, X.; Chen, L.; Dargusch, M. S.; Zou, J.; Chen, Z. G. Flexible thermoelectric materials and generators: challenges and innovations. Adv. Mater. 2019, 31, 1807916.

    Article  Google Scholar 

  3. Zhang, Y.; Park, S. J. Flexible organic thermoelectric materials and devices for wearable green energy harvesting. Polymers-Basel 2019, 11, 909.

    Article  CAS  Google Scholar 

  4. McGrail, B. T.; Sehirlioglu, A.; Pentzer, E. Polymer composites for thermoelectric applications. Angew. Chem. Int. Ed. 2015, 54, 1710–1723.

    Article  CAS  Google Scholar 

  5. Zhang, Q.; Sun, Y.; Xu, W.; Zhu, D. Organic thermoelectric materials: emerging green energy materials converting heat to electricity directly and efficiently. Adv. Mater. 2014, 26, 6829–6851.

    Article  CAS  Google Scholar 

  6. Yao, C. J.; Zhang, H. L.; Zhang, Q. Recent progress in thermoelectric materials based on conjugated polymers. Polymers 2019, 11, 107.

    Article  Google Scholar 

  7. Poehler, T. O.; Katz, H. E. Prospects for polymer-based thermoelectrics: state of the art and theoretical analysis. Energy Environ. Sci. 2012, 5, 8110–8115.

    Article  CAS  Google Scholar 

  8. Chen, Y.; Zhao, Y.; Liang, Z. Solution processed organic thermoelectrics: towards flexible thermoelectric modules. Energy Environ. Sci. 2015, 8, 401–422.

    Article  CAS  Google Scholar 

  9. Russ, B.; Glaudell, A.; Urban, J. J.; Chabinyc, M. L.; Segalman, R. A. Organic thermoelectric materials for energy harvesting and temperature control. Nat. Rev. Mater. 2016, 1, 16050.

    Article  CAS  Google Scholar 

  10. Kroon, R.; Mengistie, D. A.; Kiefer, D.; Hynynen, J.; Ryan, J. D.; Yu, L.; Müller, C. Thermoelectric plastics: from design to synthesis, processing and structure-property relationships. Chem. Soc. Rev. 2016, 45, 6147–6164.

    Article  CAS  Google Scholar 

  11. Meng, B.; Liu, J.; Wang, L. Recent development of n-type thermoelectric materials based on conjugated polymers. Nano Mater. Sci. 2021, 3, 113–123.

    Article  CAS  Google Scholar 

  12. Sun, Y.; Di, C. A.; Xu, W.; Zhu, D. Advances in n-type organic thermoelectric materials and devices. Adv. Electron. Mater. 2019, 5, 1800825.

    Article  CAS  Google Scholar 

  13. Lu, Y.; Wang, J. Y.; Pei, J. Strategies to enhance the conductivity of n-type polymer thermoelectric materials. Chem. Mater. 2019, 31, 6412–6423.

    Article  CAS  Google Scholar 

  14. Bubnova, O.; Khan, Z. U.; Malti, A.; Braun, S.; Fahlman, M.; Berggren, M.; Crispin, X. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nat. Mater. 2011, 10, 429–433.

    Article  CAS  Google Scholar 

  15. Goel, M.; Thelakkat, M. Polymer thermoelectrics: opportunities and challenges. Macromolecules 2020, 53, 3632–3642.

    Article  CAS  Google Scholar 

  16. Kim, G. H.; Shao, L.; Zhang, K.; Pipe, K. P. Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat. Mater. 2013, 12, 719–723.

    Article  CAS  Google Scholar 

  17. Schlitz, R. A.; Brunetti, F. G.; Glaudell, A. M.; Miller, P. L.; Brady, M. A.; Takacs, C. J.; Hawker, C. J.; Chabinyc, M. L. Solubility-limited extrinsic n-type doping of a high electron mobility polymer for thermoelectric applications. Adv. Mater. 2014, 26, 2825–2830.

    Article  CAS  Google Scholar 

  18. Wang, S.; Sun, H.; Erdmann, T.; Wang, G.; Fazzi, D.; Lappan, U.; Puttisong, Y.; Chen, Z.; Berggren, M.; Crispin, X.; Kiriy, A.; Voit, B.; Marks, T. J.; Fabiano, S.; Facchetti, A. A chemically doped naphthalenediimide-bithiazole polymer for n-type organic thermoelectrics. Adv. Mater. 2018, 30, 1801898.

    Article  Google Scholar 

  19. Liu, J.; Ye, G.; Potgieser, H. G. O.; Koopmans, M.; Sami, S.; Nugraha, M. I.; Villalva, D. R.; Sun, H.; Dong, J.; Yang, X.; Qiu, X.; Yao, C.; Portale, G.; Fabiano, S.; Anthopoulos, T. D.; Baran, D.; Havenith, R. W. A.; Chiechi, R. C.; Koster, L. J. A. Amphipathic side chain of a conjugated polymer optimizes dopant location toward efficient n-type organic thermoelectrics. Adv. Mater. 2021, 33, 2006694.

    Article  CAS  Google Scholar 

  20. Shi, K.; Zhang, F.; Di, C. A.; Yan, T. W.; Zou, Y.; Zhou, X.; Zhu, D.; Wang, J. Y.; Pei, J. Toward high performance n-type thermoelectric materials by rational modification of bdppv backbones. J. Am. Chem. Soc. 2015, 137, 6979–6982.

    Article  CAS  Google Scholar 

  21. Yan, X.; Xiong, M.; Li, J. T.; Zhang, S.; Ahmad, Z.; Lu, Y.; Wang, Z. Y.; Yao, Z. F.; Wang, J. Y.; Gu, X.; Lei, T. Pyrazine-flanked diketopyrrolopyrrole (DPP): a new polymer building block for high-performance n-type organic thermoelectrics. J. Am. Chem. Soc. 2019, 141, 20215–20221.

    Article  CAS  Google Scholar 

  22. Dong, C.; Meng, B.; Liu, J.; Wang, L. B ← N unit enables n-doping of conjugated polymers for thermoelectric application. ACS Appl. Mater. Interfaces 2020, 12, 10428–10433.

    Article  CAS  Google Scholar 

  23. Naab, B. D.; Gu, X.; Kurosawa, T.; To, J. W. F.; Salleo, A.; Bao, Z. Role of polymer structure on the conductivity of n-doped polymers. Adv. Electron. Mater. 2016, 2, 1600004.

    Article  Google Scholar 

  24. Lu, Y.; Yu, Z. D.; Un, H. I.; Yao, Z. F.; You, H. Y.; Jin, W.; Li, L.; Wang, Z. Y.; Dong, B.-W.; Barlow, S.; Longhi, E.; Di, C. A.; Zhu, D.; Wang, J. Y.; Silva, C.; Marder, S. R.; Pei, J. Persistent conjugated backbone and disordered lamellar packing impart polymers with efficient n-doping and high conductivities. Adv. Mater. 2021, 33, 2005946.

    Article  CAS  Google Scholar 

  25. Liu, J.; Shi, Y.; Dong, J.; Nugraha, M. I.; Qiu, X.; Su, M.; Chiechi, R. C.; Baran, D.; Portale, G.; Guo, X.; Koster, L. J. A. Overcoming coulomb interaction improves free-charge generation and thermoelectric properties for n-doped conjugated polymers. ACS Energy Lett. 2019, 4, 1556–1564.

    Article  CAS  Google Scholar 

  26. Feng, K.; Guo, H.; Wang, J.; Shi, Y.; Wu, Z.; Su, M.; Zhang, X.; Son, J. H.; Woo, H. Y.; Guo, X. Cyano-functionalized bithiophene imide-based n-type polymer semiconductors: synthesis, structure-property correlations, and thermoelectric performance. J. Am. Chem. Soc. 2021, 143, 1539–1552.

    Article  CAS  Google Scholar 

  27. Wang, Y.; Takimiya, K. Naphthodithiophenediimide-bithiopheneimide copolymers for high-performance n-type organic thermoelectrics: significant impact of backbone orientation on conductivity and thermoelectric performance. Adv. Mater. 2020, 32, 2002060.

    Article  Google Scholar 

  28. Alahmadi, A. F.; Lalancette, R. A.; Jäkle, F. Highly luminescent ladderized fluorene copolymers based on B-N lewis pair functionalization. Macromol. Rapid Commun. 2018, 39, 1800456.

    Article  Google Scholar 

  29. Shao, X.; Dou, C.; Liu, J.; Wang, L. A new building block with intramolecular D-A character for conjugated polymers: ladder structure based on B←N unit. Sci. China Chem. 2019, 62, 1387–1392.

    Article  CAS  Google Scholar 

  30. Zhao, R.; Liu, J.; Wang, L. Polymer acceptors containing B←N units for organic photovoltaics. Acc. Chem. Res. 2020, 53, 1557–1567.

    Article  CAS  Google Scholar 

  31. Zhao, R.; Min, Y.; Dou, C.; Lin, B.; Ma, W.; Liu, J.; Wang, L. A conjugated polymer containing a B←N unit for unipolar n-type organic field-effect transistors. ACS Appl. Polym. Mater. 2020, 2, 19–25.

    Article  CAS  Google Scholar 

  32. Miao, J.; Meng, B.; Ding, Z.; Liu, J.; Wang, L. Organic solar cells based on small molecule donors and polymer acceptors operating at 150 °C. J. Mater. Chem. A 2020, 8, 10983–10988.

    Article  CAS  Google Scholar 

  33. Long, X.; Ding, Z.; Dou, C.; Zhang, J.; Liu, J.; Wang, L. Polymer acceptor based on double B←N bridged bipyridine (BNBP) unit for high-efficiency all-polymer solar cells. Adv. Mater. 2016, 28, 6504–6508.

    Article  CAS  Google Scholar 

  34. Zhao, R.; Wang, N.; Yu, Y.; Liu, J. Organoboron polymer for 10% efficiency all-polymer solar cells. Chem. Mater. 2020, 32, 1308–1314.

    Article  CAS  Google Scholar 

  35. Long, X.; Li, D.; Wang, B.; Jiang, Z.; Xu, W.; Wang, B.; Yang, D.; Xia, Y. Heterocyclization strategy for construction of linear conjugated polymers: efficient metal-free electrocatalysts for oxygen reduction. Angew. Chem. Int. Ed. 2019, 58, 11369–11373.

    Article  CAS  Google Scholar 

  36. Zhang, Z.; Ding, Z.; Jones, D. J.; Wong, W. W. H.; Kan, B.; Bi, Z.; Wan, X.; Ma, W.; Chen, Y.; Long, X.; Dou, C.; Liu, J.; Wang, L. Manipulating active layer morphology of molecular donor/polymer acceptor based organic solar cells through ternary blends. Sci. China Chem. 2018, 61, 1025–1033.

    Article  CAS  Google Scholar 

  37. Dou, C. D.; Long, X. J.; Ding, Z. C.; Xie, Z. Y.; Liu, J.; Wang, L. X. An electron-deficient building block based on the B←N unit: an electron acceptor for all-polymer solar cells. Angew. Chem. Int. Ed. 2016, 55, 1436–1440.

    Article  CAS  Google Scholar 

  38. Li, D.; Wang, B.; Long, X.; Xu, W.; Xia, Y.; Yang, D.; Yao, X. Controlled asymmetric charge distribution of active centers in conjugated polymers for oxygen reduction. Angew. Chem. Int. Ed. 2021, 60, 26483–26488.

    Article  CAS  Google Scholar 

  39. Dou, C.; Liu, J.; Wang, L. Conjugated polymers containing B←N unit as electron acceptors for all-polymer solar cells. Sci. China Chem. 2017, 60, 450–459.

    Article  CAS  Google Scholar 

  40. Zhang, Z.; Wang, T.; Ding, Z.; Miao, J.; Wang, J.; Dou, C.; Meng, B.; Liu, J.; Wang, L. Small molecular donor/polymer acceptor type organic solar cells: effect of molecular weight on active layer morphology. Macromolecules 2019, 52, 8682–8689.

    Article  CAS  Google Scholar 

  41. Dong, C.; Deng, S.; Meng, B.; Liu, J.; Wang, L. Distannylated monomer of strong electron-accepting organoboron building block: enabling acceptor-acceptor type conjugated polymers for n-type thermoelectric applications. Angew. Chem. Int. Ed. 2021, 60, 16184–16190.

    Article  CAS  Google Scholar 

  42. Deng, Y.; Chen, Y.; Zhang, X.; Tian, H.; Bao, C.; Yan, D.; Geng, Y.; Wang, F. Donor-acceptor conjugated polymers with dithienocarbazoles as donor units: effect of structure on semiconducting properties. Macromolecules 2012, 45, 8621–8627.

    Article  CAS  Google Scholar 

  43. Liu, S.; Kan, Z.; Thomas, S.; Cruciani, F.; Brédas, J. L.; Beaujuge, P. M. Thieno[3,4-c]pyrrole-4,6-dione-3,4-difluorothiophene polymer acceptors for efficient all-polymer bulk heterojunction solar cells. Angew. Chem. Int. Ed. 2016, 55, 12996–13000.

    Article  CAS  Google Scholar 

  44. Yuan, D.; Medina Rivero, S.; Mayorga Burrezo, P.; Ren, L.; Sandoval-Salinas, M. E.; Grabowski, S. J.; Casanova, D.; Zhu, X.; Casado, J. Thieno[3,4-c]pyrrole-4,6-dione oligothiophenes have two crossed paths for electron delocalization. Chem. Eur. J. 2018, 24, 13523–13534.

    Article  CAS  Google Scholar 

  45. Grandl, M.; Schepper, J.; Maity, S.; Peukert, A.; von Hauff, E.; Pammer, F. N→B ladder polymers prepared by postfunctionalization: tuning of electron affinity and evaluation as acceptors in all-polymer solar cells. Macromolecules 2019, 52, 1013–1024.

    Article  Google Scholar 

  46. Wakabayashi, J.; Gon, M.; Tanaka, K.; Chujo, Y. Near-infrared absorptive and emissive poly(p-phenylene vinylene) derivative containing azobenzene-boron complexes. Macromolecules 2020, 53, 4524–4532.

    Article  CAS  Google Scholar 

  47. Huang, D.; Yao, H.; Cui, Y.; Zou, Y.; Zhang, F.; Wang, C.; Shen, H.; Jin, W.; Zhu, J.; Diao, Y.; Xu, W.; Di, C. A.; Zhu, D. Conjugated-backbone effect of organic small molecules for n-type thermoelectric materials with ZT over 0.2. J. Am. Chem. Soc. 2017, 139, 13013–13023.

    Article  CAS  Google Scholar 

  48. Wang, S.; Sun, H.; Ail, U.; Vagin, M.; Persson, P. O. Å.; Andreasen, J. W.; Thiel, W.; Berggren, M.; Crispin, X.; Fazzi, D.; Fabiano, S. Thermoelectric properties of solution-processed n-doped ladder-type conducting polymers. Adv. Mater. 2016, 28, 10764–10771.

    Article  CAS  Google Scholar 

  49. Burkholder, C.; Dolbier, W. R.; Médebielle, M. Tetrakis(dimethylamino)ethylene as a useful reductant of some bromodifluoromethyl heterocycles. application to the synthesis of new gem-difluorinated heteroarylated compounds. J. Org. Chem. 1998, 63, 5385–5394.

    Article  CAS  Google Scholar 

  50. Shin, Y.; Massetti, M.; Komber, H.; Biskup, T.; Nava, D.; Lanzani, G.; Caironi, M.; Sommer, M. Improving miscibility of a naphthalene diimide-bithiophene copolymer with n-type dopants through the incorporation of “Kinked” monomers. Adv. Electron. Mater. 2018, 4, 1700581.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 22075271, 21625403, 21875244 and 21875241). B.M. thanks the financial supports by State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences and the Jilin Scientific and Technological Development Program (No. 20220508142RC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Meng or Jun Liu.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, CS., Meng, B., Liu, J. et al. Acceptor-acceptor-type Organoboron Conjugated Polymers: Effect of Backbone Configuration on Thermoelectric Performance. Chin J Polym Sci 41, 108–116 (2023). https://doi.org/10.1007/s10118-022-2815-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2815-0

Keywords

Navigation